You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdt01.f 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. *> \brief \b DBDT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
  12. * RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER KD, LDA, LDPT, LDQ, M, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
  20. * $ Q( LDQ, * ), WORK( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DBDT01 reconstructs a general matrix A from its bidiagonal form
  30. *> A = Q * B * P'
  31. *> where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
  32. *> matrices and B is bidiagonal.
  33. *>
  34. *> The test ratio to test the reduction is
  35. *> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
  36. *> where PT = P' and EPS is the machine precision.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] M
  43. *> \verbatim
  44. *> M is INTEGER
  45. *> The number of rows of the matrices A and Q.
  46. *> \endverbatim
  47. *>
  48. *> \param[in] N
  49. *> \verbatim
  50. *> N is INTEGER
  51. *> The number of columns of the matrices A and P'.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] KD
  55. *> \verbatim
  56. *> KD is INTEGER
  57. *> If KD = 0, B is diagonal and the array E is not referenced.
  58. *> If KD = 1, the reduction was performed by xGEBRD; B is upper
  59. *> bidiagonal if M >= N, and lower bidiagonal if M < N.
  60. *> If KD = -1, the reduction was performed by xGBBRD; B is
  61. *> always upper bidiagonal.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  67. *> The m by n matrix A.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,M).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] Q
  77. *> \verbatim
  78. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  79. *> The m by min(m,n) orthogonal matrix Q in the reduction
  80. *> A = Q * B * P'.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDQ
  84. *> \verbatim
  85. *> LDQ is INTEGER
  86. *> The leading dimension of the array Q. LDQ >= max(1,M).
  87. *> \endverbatim
  88. *>
  89. *> \param[in] D
  90. *> \verbatim
  91. *> D is DOUBLE PRECISION array, dimension (min(M,N))
  92. *> The diagonal elements of the bidiagonal matrix B.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] E
  96. *> \verbatim
  97. *> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
  98. *> The superdiagonal elements of the bidiagonal matrix B if
  99. *> m >= n, or the subdiagonal elements of B if m < n.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] PT
  103. *> \verbatim
  104. *> PT is DOUBLE PRECISION array, dimension (LDPT,N)
  105. *> The min(m,n) by n orthogonal matrix P' in the reduction
  106. *> A = Q * B * P'.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDPT
  110. *> \verbatim
  111. *> LDPT is INTEGER
  112. *> The leading dimension of the array PT.
  113. *> LDPT >= max(1,min(M,N)).
  114. *> \endverbatim
  115. *>
  116. *> \param[out] WORK
  117. *> \verbatim
  118. *> WORK is DOUBLE PRECISION array, dimension (M+N)
  119. *> \endverbatim
  120. *>
  121. *> \param[out] RESID
  122. *> \verbatim
  123. *> RESID is DOUBLE PRECISION
  124. *> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date December 2016
  136. *
  137. *> \ingroup double_eig
  138. *
  139. * =====================================================================
  140. SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
  141. $ RESID )
  142. *
  143. * -- LAPACK test routine (version 3.7.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * December 2016
  147. *
  148. * .. Scalar Arguments ..
  149. INTEGER KD, LDA, LDPT, LDQ, M, N
  150. DOUBLE PRECISION RESID
  151. * ..
  152. * .. Array Arguments ..
  153. DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
  154. $ Q( LDQ, * ), WORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Parameters ..
  160. DOUBLE PRECISION ZERO, ONE
  161. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  162. * ..
  163. * .. Local Scalars ..
  164. INTEGER I, J
  165. DOUBLE PRECISION ANORM, EPS
  166. * ..
  167. * .. External Functions ..
  168. DOUBLE PRECISION DASUM, DLAMCH, DLANGE
  169. EXTERNAL DASUM, DLAMCH, DLANGE
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL DCOPY, DGEMV
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC DBLE, MAX, MIN
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. * Quick return if possible
  180. *
  181. IF( M.LE.0 .OR. N.LE.0 ) THEN
  182. RESID = ZERO
  183. RETURN
  184. END IF
  185. *
  186. * Compute A - Q * B * P' one column at a time.
  187. *
  188. RESID = ZERO
  189. IF( KD.NE.0 ) THEN
  190. *
  191. * B is bidiagonal.
  192. *
  193. IF( KD.NE.0 .AND. M.GE.N ) THEN
  194. *
  195. * B is upper bidiagonal and M >= N.
  196. *
  197. DO 20 J = 1, N
  198. CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
  199. DO 10 I = 1, N - 1
  200. WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
  201. 10 CONTINUE
  202. WORK( M+N ) = D( N )*PT( N, J )
  203. CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
  204. $ WORK( M+1 ), 1, ONE, WORK, 1 )
  205. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  206. 20 CONTINUE
  207. ELSE IF( KD.LT.0 ) THEN
  208. *
  209. * B is upper bidiagonal and M < N.
  210. *
  211. DO 40 J = 1, N
  212. CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
  213. DO 30 I = 1, M - 1
  214. WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
  215. 30 CONTINUE
  216. WORK( M+M ) = D( M )*PT( M, J )
  217. CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
  218. $ WORK( M+1 ), 1, ONE, WORK, 1 )
  219. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  220. 40 CONTINUE
  221. ELSE
  222. *
  223. * B is lower bidiagonal.
  224. *
  225. DO 60 J = 1, N
  226. CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
  227. WORK( M+1 ) = D( 1 )*PT( 1, J )
  228. DO 50 I = 2, M
  229. WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
  230. $ D( I )*PT( I, J )
  231. 50 CONTINUE
  232. CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
  233. $ WORK( M+1 ), 1, ONE, WORK, 1 )
  234. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  235. 60 CONTINUE
  236. END IF
  237. ELSE
  238. *
  239. * B is diagonal.
  240. *
  241. IF( M.GE.N ) THEN
  242. DO 80 J = 1, N
  243. CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
  244. DO 70 I = 1, N
  245. WORK( M+I ) = D( I )*PT( I, J )
  246. 70 CONTINUE
  247. CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
  248. $ WORK( M+1 ), 1, ONE, WORK, 1 )
  249. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  250. 80 CONTINUE
  251. ELSE
  252. DO 100 J = 1, N
  253. CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
  254. DO 90 I = 1, M
  255. WORK( M+I ) = D( I )*PT( I, J )
  256. 90 CONTINUE
  257. CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
  258. $ WORK( M+1 ), 1, ONE, WORK, 1 )
  259. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  260. 100 CONTINUE
  261. END IF
  262. END IF
  263. *
  264. * Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
  265. *
  266. ANORM = DLANGE( '1', M, N, A, LDA, WORK )
  267. EPS = DLAMCH( 'Precision' )
  268. *
  269. IF( ANORM.LE.ZERO ) THEN
  270. IF( RESID.NE.ZERO )
  271. $ RESID = ONE / EPS
  272. ELSE
  273. IF( ANORM.GE.RESID ) THEN
  274. RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
  275. ELSE
  276. IF( ANORM.LT.ONE ) THEN
  277. RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
  278. $ ( DBLE( N )*EPS )
  279. ELSE
  280. RESID = MIN( RESID / ANORM, DBLE( N ) ) /
  281. $ ( DBLE( N )*EPS )
  282. END IF
  283. END IF
  284. END IF
  285. *
  286. RETURN
  287. *
  288. * End of DBDT01
  289. *
  290. END