You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cdrvst2stg.f 76 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115
  1. *> \brief \b CDRVST2STG
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
  13. * LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
  14. * IWORK, LIWORK, RESULT, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  18. * $ NSIZES, NTYPES
  19. * REAL THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
  25. * $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
  26. * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
  27. * $ V( LDU, * ), WORK( * ), Z( LDU, * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CDRVST2STG checks the Hermitian eigenvalue problem drivers.
  37. *>
  38. *> CHEEVD computes all eigenvalues and, optionally,
  39. *> eigenvectors of a complex Hermitian matrix,
  40. *> using a divide-and-conquer algorithm.
  41. *>
  42. *> CHEEVX computes selected eigenvalues and, optionally,
  43. *> eigenvectors of a complex Hermitian matrix.
  44. *>
  45. *> CHEEVR computes selected eigenvalues and, optionally,
  46. *> eigenvectors of a complex Hermitian matrix
  47. *> using the Relatively Robust Representation where it can.
  48. *>
  49. *> CHPEVD computes all eigenvalues and, optionally,
  50. *> eigenvectors of a complex Hermitian matrix in packed
  51. *> storage, using a divide-and-conquer algorithm.
  52. *>
  53. *> CHPEVX computes selected eigenvalues and, optionally,
  54. *> eigenvectors of a complex Hermitian matrix in packed
  55. *> storage.
  56. *>
  57. *> CHBEVD computes all eigenvalues and, optionally,
  58. *> eigenvectors of a complex Hermitian band matrix,
  59. *> using a divide-and-conquer algorithm.
  60. *>
  61. *> CHBEVX computes selected eigenvalues and, optionally,
  62. *> eigenvectors of a complex Hermitian band matrix.
  63. *>
  64. *> CHEEV computes all eigenvalues and, optionally,
  65. *> eigenvectors of a complex Hermitian matrix.
  66. *>
  67. *> CHPEV computes all eigenvalues and, optionally,
  68. *> eigenvectors of a complex Hermitian matrix in packed
  69. *> storage.
  70. *>
  71. *> CHBEV computes all eigenvalues and, optionally,
  72. *> eigenvectors of a complex Hermitian band matrix.
  73. *>
  74. *> When CDRVST2STG is called, a number of matrix "sizes" ("n's") and a
  75. *> number of matrix "types" are specified. For each size ("n")
  76. *> and each type of matrix, one matrix will be generated and used
  77. *> to test the appropriate drivers. For each matrix and each
  78. *> driver routine called, the following tests will be performed:
  79. *>
  80. *> (1) | A - Z D Z' | / ( |A| n ulp )
  81. *>
  82. *> (2) | I - Z Z' | / ( n ulp )
  83. *>
  84. *> (3) | D1 - D2 | / ( |D1| ulp )
  85. *>
  86. *> where Z is the matrix of eigenvectors returned when the
  87. *> eigenvector option is given and D1 and D2 are the eigenvalues
  88. *> returned with and without the eigenvector option.
  89. *>
  90. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  91. *> each element NN(j) specifies one size.
  92. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  93. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  94. *> Currently, the list of possible types is:
  95. *>
  96. *> (1) The zero matrix.
  97. *> (2) The identity matrix.
  98. *>
  99. *> (3) A diagonal matrix with evenly spaced entries
  100. *> 1, ..., ULP and random signs.
  101. *> (ULP = (first number larger than 1) - 1 )
  102. *> (4) A diagonal matrix with geometrically spaced entries
  103. *> 1, ..., ULP and random signs.
  104. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  105. *> and random signs.
  106. *>
  107. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  108. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  109. *>
  110. *> (8) A matrix of the form U* D U, where U is unitary and
  111. *> D has evenly spaced entries 1, ..., ULP with random signs
  112. *> on the diagonal.
  113. *>
  114. *> (9) A matrix of the form U* D U, where U is unitary and
  115. *> D has geometrically spaced entries 1, ..., ULP with random
  116. *> signs on the diagonal.
  117. *>
  118. *> (10) A matrix of the form U* D U, where U is unitary and
  119. *> D has "clustered" entries 1, ULP,..., ULP with random
  120. *> signs on the diagonal.
  121. *>
  122. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  123. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  124. *>
  125. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  126. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  127. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  128. *> (16) A band matrix with half bandwidth randomly chosen between
  129. *> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
  130. *> with random signs.
  131. *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
  132. *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
  133. *> \endverbatim
  134. *
  135. * Arguments:
  136. * ==========
  137. *
  138. *> \verbatim
  139. *> NSIZES INTEGER
  140. *> The number of sizes of matrices to use. If it is zero,
  141. *> CDRVST2STG does nothing. It must be at least zero.
  142. *> Not modified.
  143. *>
  144. *> NN INTEGER array, dimension (NSIZES)
  145. *> An array containing the sizes to be used for the matrices.
  146. *> Zero values will be skipped. The values must be at least
  147. *> zero.
  148. *> Not modified.
  149. *>
  150. *> NTYPES INTEGER
  151. *> The number of elements in DOTYPE. If it is zero, CDRVST2STG
  152. *> does nothing. It must be at least zero. If it is MAXTYP+1
  153. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  154. *> defined, which is to use whatever matrix is in A. This
  155. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  156. *> DOTYPE(MAXTYP+1) is .TRUE. .
  157. *> Not modified.
  158. *>
  159. *> DOTYPE LOGICAL array, dimension (NTYPES)
  160. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  161. *> matrix of that size and of type j will be generated.
  162. *> If NTYPES is smaller than the maximum number of types
  163. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  164. *> MAXTYP will not be generated. If NTYPES is larger
  165. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  166. *> will be ignored.
  167. *> Not modified.
  168. *>
  169. *> ISEED INTEGER array, dimension (4)
  170. *> On entry ISEED specifies the seed of the random number
  171. *> generator. The array elements should be between 0 and 4095;
  172. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  173. *> be odd. The random number generator uses a linear
  174. *> congruential sequence limited to small integers, and so
  175. *> should produce machine independent random numbers. The
  176. *> values of ISEED are changed on exit, and can be used in the
  177. *> next call to CDRVST2STG to continue the same random number
  178. *> sequence.
  179. *> Modified.
  180. *>
  181. *> THRESH REAL
  182. *> A test will count as "failed" if the "error", computed as
  183. *> described above, exceeds THRESH. Note that the error
  184. *> is scaled to be O(1), so THRESH should be a reasonably
  185. *> small multiple of 1, e.g., 10 or 100. In particular,
  186. *> it should not depend on the precision (single vs. double)
  187. *> or the size of the matrix. It must be at least zero.
  188. *> Not modified.
  189. *>
  190. *> NOUNIT INTEGER
  191. *> The FORTRAN unit number for printing out error messages
  192. *> (e.g., if a routine returns IINFO not equal to 0.)
  193. *> Not modified.
  194. *>
  195. *> A COMPLEX array, dimension (LDA , max(NN))
  196. *> Used to hold the matrix whose eigenvalues are to be
  197. *> computed. On exit, A contains the last matrix actually
  198. *> used.
  199. *> Modified.
  200. *>
  201. *> LDA INTEGER
  202. *> The leading dimension of A. It must be at
  203. *> least 1 and at least max( NN ).
  204. *> Not modified.
  205. *>
  206. *> D1 REAL array, dimension (max(NN))
  207. *> The eigenvalues of A, as computed by CSTEQR simlutaneously
  208. *> with Z. On exit, the eigenvalues in D1 correspond with the
  209. *> matrix in A.
  210. *> Modified.
  211. *>
  212. *> D2 REAL array, dimension (max(NN))
  213. *> The eigenvalues of A, as computed by CSTEQR if Z is not
  214. *> computed. On exit, the eigenvalues in D2 correspond with
  215. *> the matrix in A.
  216. *> Modified.
  217. *>
  218. *> D3 REAL array, dimension (max(NN))
  219. *> The eigenvalues of A, as computed by SSTERF. On exit, the
  220. *> eigenvalues in D3 correspond with the matrix in A.
  221. *> Modified.
  222. *>
  223. *> WA1 REAL array, dimension
  224. *>
  225. *> WA2 REAL array, dimension
  226. *>
  227. *> WA3 REAL array, dimension
  228. *>
  229. *> U COMPLEX array, dimension (LDU, max(NN))
  230. *> The unitary matrix computed by CHETRD + CUNGC3.
  231. *> Modified.
  232. *>
  233. *> LDU INTEGER
  234. *> The leading dimension of U, Z, and V. It must be at
  235. *> least 1 and at least max( NN ).
  236. *> Not modified.
  237. *>
  238. *> V COMPLEX array, dimension (LDU, max(NN))
  239. *> The Housholder vectors computed by CHETRD in reducing A to
  240. *> tridiagonal form.
  241. *> Modified.
  242. *>
  243. *> TAU COMPLEX array, dimension (max(NN))
  244. *> The Householder factors computed by CHETRD in reducing A
  245. *> to tridiagonal form.
  246. *> Modified.
  247. *>
  248. *> Z COMPLEX array, dimension (LDU, max(NN))
  249. *> The unitary matrix of eigenvectors computed by CHEEVD,
  250. *> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX.
  251. *> Modified.
  252. *>
  253. *> WORK - COMPLEX array of dimension ( LWORK )
  254. *> Workspace.
  255. *> Modified.
  256. *>
  257. *> LWORK - INTEGER
  258. *> The number of entries in WORK. This must be at least
  259. *> 2*max( NN(j), 2 )**2.
  260. *> Not modified.
  261. *>
  262. *> RWORK REAL array, dimension (3*max(NN))
  263. *> Workspace.
  264. *> Modified.
  265. *>
  266. *> LRWORK - INTEGER
  267. *> The number of entries in RWORK.
  268. *>
  269. *> IWORK INTEGER array, dimension (6*max(NN))
  270. *> Workspace.
  271. *> Modified.
  272. *>
  273. *> LIWORK - INTEGER
  274. *> The number of entries in IWORK.
  275. *>
  276. *> RESULT REAL array, dimension (??)
  277. *> The values computed by the tests described above.
  278. *> The values are currently limited to 1/ulp, to avoid
  279. *> overflow.
  280. *> Modified.
  281. *>
  282. *> INFO INTEGER
  283. *> If 0, then everything ran OK.
  284. *> -1: NSIZES < 0
  285. *> -2: Some NN(j) < 0
  286. *> -3: NTYPES < 0
  287. *> -5: THRESH < 0
  288. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  289. *> -16: LDU < 1 or LDU < NMAX.
  290. *> -21: LWORK too small.
  291. *> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF,
  292. *> or SORMC2 returns an error code, the
  293. *> absolute value of it is returned.
  294. *> Modified.
  295. *>
  296. *>-----------------------------------------------------------------------
  297. *>
  298. *> Some Local Variables and Parameters:
  299. *> ---- ----- --------- --- ----------
  300. *> ZERO, ONE Real 0 and 1.
  301. *> MAXTYP The number of types defined.
  302. *> NTEST The number of tests performed, or which can
  303. *> be performed so far, for the current matrix.
  304. *> NTESTT The total number of tests performed so far.
  305. *> NMAX Largest value in NN.
  306. *> NMATS The number of matrices generated so far.
  307. *> NERRS The number of tests which have exceeded THRESH
  308. *> so far (computed by SLAFTS).
  309. *> COND, IMODE Values to be passed to the matrix generators.
  310. *> ANORM Norm of A; passed to matrix generators.
  311. *>
  312. *> OVFL, UNFL Overflow and underflow thresholds.
  313. *> ULP, ULPINV Finest relative precision and its inverse.
  314. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  315. *> The following four arrays decode JTYPE:
  316. *> KTYPE(j) The general type (1-10) for type "j".
  317. *> KMODE(j) The MODE value to be passed to the matrix
  318. *> generator for type "j".
  319. *> KMAGN(j) The order of magnitude ( O(1),
  320. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  321. *> \endverbatim
  322. *
  323. * Authors:
  324. * ========
  325. *
  326. *> \author Univ. of Tennessee
  327. *> \author Univ. of California Berkeley
  328. *> \author Univ. of Colorado Denver
  329. *> \author NAG Ltd.
  330. *
  331. *> \date June 2017
  332. *
  333. *> \ingroup complex_eig
  334. *
  335. * =====================================================================
  336. SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  337. $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
  338. $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
  339. $ IWORK, LIWORK, RESULT, INFO )
  340. *
  341. * -- LAPACK test routine (version 3.7.1) --
  342. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  343. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  344. * June 2017
  345. *
  346. * .. Scalar Arguments ..
  347. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  348. $ NSIZES, NTYPES
  349. REAL THRESH
  350. * ..
  351. * .. Array Arguments ..
  352. LOGICAL DOTYPE( * )
  353. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  354. REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
  355. $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
  356. COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
  357. $ V( LDU, * ), WORK( * ), Z( LDU, * )
  358. * ..
  359. *
  360. * =====================================================================
  361. *
  362. *
  363. * .. Parameters ..
  364. REAL ZERO, ONE, TWO, TEN
  365. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
  366. $ TEN = 10.0E+0 )
  367. REAL HALF
  368. PARAMETER ( HALF = ONE / TWO )
  369. COMPLEX CZERO, CONE
  370. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  371. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  372. INTEGER MAXTYP
  373. PARAMETER ( MAXTYP = 18 )
  374. * ..
  375. * .. Local Scalars ..
  376. LOGICAL BADNN
  377. CHARACTER UPLO
  378. INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
  379. $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
  380. $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
  381. $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
  382. $ NTEST, NTESTT
  383. REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  384. $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
  385. $ VL, VU
  386. * ..
  387. * .. Local Arrays ..
  388. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  389. $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
  390. $ KTYPE( MAXTYP )
  391. * ..
  392. * .. External Functions ..
  393. REAL SLAMCH, SLARND, SSXT1
  394. EXTERNAL SLAMCH, SLARND, SSXT1
  395. * ..
  396. * .. External Subroutines ..
  397. EXTERNAL ALASVM, SLABAD, SLAFTS, XERBLA, CHBEV, CHBEVD,
  398. $ CHBEVX, CHEEV, CHEEVD, CHEEVR, CHEEVX, CHET21,
  399. $ CHET22, CHPEV, CHPEVD, CHPEVX, CLACPY, CLASET,
  400. $ CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE,
  401. $ CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE,
  402. $ CHBEVX_2STAGE, CLATMR, CLATMS
  403. * ..
  404. * .. Intrinsic Functions ..
  405. INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT
  406. * ..
  407. * .. Data statements ..
  408. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
  409. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  410. $ 2, 3, 1, 2, 3 /
  411. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  412. $ 0, 0, 4, 4, 4 /
  413. * ..
  414. * .. Executable Statements ..
  415. *
  416. * 1) Check for errors
  417. *
  418. NTESTT = 0
  419. INFO = 0
  420. *
  421. BADNN = .FALSE.
  422. NMAX = 1
  423. DO 10 J = 1, NSIZES
  424. NMAX = MAX( NMAX, NN( J ) )
  425. IF( NN( J ).LT.0 )
  426. $ BADNN = .TRUE.
  427. 10 CONTINUE
  428. *
  429. * Check for errors
  430. *
  431. IF( NSIZES.LT.0 ) THEN
  432. INFO = -1
  433. ELSE IF( BADNN ) THEN
  434. INFO = -2
  435. ELSE IF( NTYPES.LT.0 ) THEN
  436. INFO = -3
  437. ELSE IF( LDA.LT.NMAX ) THEN
  438. INFO = -9
  439. ELSE IF( LDU.LT.NMAX ) THEN
  440. INFO = -16
  441. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  442. INFO = -22
  443. END IF
  444. *
  445. IF( INFO.NE.0 ) THEN
  446. CALL XERBLA( 'CDRVST2STG', -INFO )
  447. RETURN
  448. END IF
  449. *
  450. * Quick return if nothing to do
  451. *
  452. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  453. $ RETURN
  454. *
  455. * More Important constants
  456. *
  457. UNFL = SLAMCH( 'Safe minimum' )
  458. OVFL = SLAMCH( 'Overflow' )
  459. CALL SLABAD( UNFL, OVFL )
  460. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  461. ULPINV = ONE / ULP
  462. RTUNFL = SQRT( UNFL )
  463. RTOVFL = SQRT( OVFL )
  464. *
  465. * Loop over sizes, types
  466. *
  467. DO 20 I = 1, 4
  468. ISEED2( I ) = ISEED( I )
  469. ISEED3( I ) = ISEED( I )
  470. 20 CONTINUE
  471. *
  472. NERRS = 0
  473. NMATS = 0
  474. *
  475. DO 1220 JSIZE = 1, NSIZES
  476. N = NN( JSIZE )
  477. IF( N.GT.0 ) THEN
  478. LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
  479. IF( 2**LGN.LT.N )
  480. $ LGN = LGN + 1
  481. IF( 2**LGN.LT.N )
  482. $ LGN = LGN + 1
  483. LWEDC = MAX( 2*N+N*N, 2*N*N )
  484. LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
  485. LIWEDC = 3 + 5*N
  486. ELSE
  487. LWEDC = 2
  488. LRWEDC = 8
  489. LIWEDC = 8
  490. END IF
  491. ANINV = ONE / REAL( MAX( 1, N ) )
  492. *
  493. IF( NSIZES.NE.1 ) THEN
  494. MTYPES = MIN( MAXTYP, NTYPES )
  495. ELSE
  496. MTYPES = MIN( MAXTYP+1, NTYPES )
  497. END IF
  498. *
  499. DO 1210 JTYPE = 1, MTYPES
  500. IF( .NOT.DOTYPE( JTYPE ) )
  501. $ GO TO 1210
  502. NMATS = NMATS + 1
  503. NTEST = 0
  504. *
  505. DO 30 J = 1, 4
  506. IOLDSD( J ) = ISEED( J )
  507. 30 CONTINUE
  508. *
  509. * 2) Compute "A"
  510. *
  511. * Control parameters:
  512. *
  513. * KMAGN KMODE KTYPE
  514. * =1 O(1) clustered 1 zero
  515. * =2 large clustered 2 identity
  516. * =3 small exponential (none)
  517. * =4 arithmetic diagonal, (w/ eigenvalues)
  518. * =5 random log Hermitian, w/ eigenvalues
  519. * =6 random (none)
  520. * =7 random diagonal
  521. * =8 random Hermitian
  522. * =9 band Hermitian, w/ eigenvalues
  523. *
  524. IF( MTYPES.GT.MAXTYP )
  525. $ GO TO 110
  526. *
  527. ITYPE = KTYPE( JTYPE )
  528. IMODE = KMODE( JTYPE )
  529. *
  530. * Compute norm
  531. *
  532. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  533. *
  534. 40 CONTINUE
  535. ANORM = ONE
  536. GO TO 70
  537. *
  538. 50 CONTINUE
  539. ANORM = ( RTOVFL*ULP )*ANINV
  540. GO TO 70
  541. *
  542. 60 CONTINUE
  543. ANORM = RTUNFL*N*ULPINV
  544. GO TO 70
  545. *
  546. 70 CONTINUE
  547. *
  548. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  549. IINFO = 0
  550. COND = ULPINV
  551. *
  552. * Special Matrices -- Identity & Jordan block
  553. *
  554. * Zero
  555. *
  556. IF( ITYPE.EQ.1 ) THEN
  557. IINFO = 0
  558. *
  559. ELSE IF( ITYPE.EQ.2 ) THEN
  560. *
  561. * Identity
  562. *
  563. DO 80 JCOL = 1, N
  564. A( JCOL, JCOL ) = ANORM
  565. 80 CONTINUE
  566. *
  567. ELSE IF( ITYPE.EQ.4 ) THEN
  568. *
  569. * Diagonal Matrix, [Eigen]values Specified
  570. *
  571. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  572. $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
  573. *
  574. ELSE IF( ITYPE.EQ.5 ) THEN
  575. *
  576. * Hermitian, eigenvalues specified
  577. *
  578. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  579. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  580. *
  581. ELSE IF( ITYPE.EQ.7 ) THEN
  582. *
  583. * Diagonal, random eigenvalues
  584. *
  585. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  586. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  587. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  588. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  589. *
  590. ELSE IF( ITYPE.EQ.8 ) THEN
  591. *
  592. * Hermitian, random eigenvalues
  593. *
  594. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  595. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  596. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  597. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  598. *
  599. ELSE IF( ITYPE.EQ.9 ) THEN
  600. *
  601. * Hermitian banded, eigenvalues specified
  602. *
  603. IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
  604. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  605. $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
  606. $ IINFO )
  607. *
  608. * Store as dense matrix for most routines.
  609. *
  610. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  611. DO 100 IDIAG = -IHBW, IHBW
  612. IROW = IHBW - IDIAG + 1
  613. J1 = MAX( 1, IDIAG+1 )
  614. J2 = MIN( N, N+IDIAG )
  615. DO 90 J = J1, J2
  616. I = J - IDIAG
  617. A( I, J ) = U( IROW, J )
  618. 90 CONTINUE
  619. 100 CONTINUE
  620. ELSE
  621. IINFO = 1
  622. END IF
  623. *
  624. IF( IINFO.NE.0 ) THEN
  625. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  626. $ IOLDSD
  627. INFO = ABS( IINFO )
  628. RETURN
  629. END IF
  630. *
  631. 110 CONTINUE
  632. *
  633. ABSTOL = UNFL + UNFL
  634. IF( N.LE.1 ) THEN
  635. IL = 1
  636. IU = N
  637. ELSE
  638. IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
  639. IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
  640. IF( IL.GT.IU ) THEN
  641. ITEMP = IL
  642. IL = IU
  643. IU = ITEMP
  644. END IF
  645. END IF
  646. *
  647. * Perform tests storing upper or lower triangular
  648. * part of matrix.
  649. *
  650. DO 1200 IUPLO = 0, 1
  651. IF( IUPLO.EQ.0 ) THEN
  652. UPLO = 'L'
  653. ELSE
  654. UPLO = 'U'
  655. END IF
  656. *
  657. * Call CHEEVD and CHEEVX.
  658. *
  659. CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
  660. *
  661. NTEST = NTEST + 1
  662. CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
  663. $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  664. IF( IINFO.NE.0 ) THEN
  665. WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO //
  666. $ ')', IINFO, N, JTYPE, IOLDSD
  667. INFO = ABS( IINFO )
  668. IF( IINFO.LT.0 ) THEN
  669. RETURN
  670. ELSE
  671. RESULT( NTEST ) = ULPINV
  672. RESULT( NTEST+1 ) = ULPINV
  673. RESULT( NTEST+2 ) = ULPINV
  674. GO TO 130
  675. END IF
  676. END IF
  677. *
  678. * Do tests 1 and 2.
  679. *
  680. CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
  681. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  682. *
  683. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  684. *
  685. NTEST = NTEST + 2
  686. CALL CHEEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
  687. $ LWORK, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  688. IF( IINFO.NE.0 ) THEN
  689. WRITE( NOUNIT, FMT = 9999 )
  690. $ 'CHEEVD_2STAGE(N,' // UPLO //
  691. $ ')', IINFO, N, JTYPE, IOLDSD
  692. INFO = ABS( IINFO )
  693. IF( IINFO.LT.0 ) THEN
  694. RETURN
  695. ELSE
  696. RESULT( NTEST ) = ULPINV
  697. GO TO 130
  698. END IF
  699. END IF
  700. *
  701. * Do test 3.
  702. *
  703. TEMP1 = ZERO
  704. TEMP2 = ZERO
  705. DO 120 J = 1, N
  706. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  707. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  708. 120 CONTINUE
  709. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  710. $ ULP*MAX( TEMP1, TEMP2 ) )
  711. *
  712. 130 CONTINUE
  713. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  714. *
  715. NTEST = NTEST + 1
  716. *
  717. IF( N.GT.0 ) THEN
  718. TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
  719. IF( IL.NE.1 ) THEN
  720. VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
  721. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  722. ELSE IF( N.GT.0 ) THEN
  723. VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
  724. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  725. END IF
  726. IF( IU.NE.N ) THEN
  727. VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
  728. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  729. ELSE IF( N.GT.0 ) THEN
  730. VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
  731. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  732. END IF
  733. ELSE
  734. TEMP3 = ZERO
  735. VL = ZERO
  736. VU = ONE
  737. END IF
  738. *
  739. CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  740. $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
  741. $ IWORK, IWORK( 5*N+1 ), IINFO )
  742. IF( IINFO.NE.0 ) THEN
  743. WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO //
  744. $ ')', IINFO, N, JTYPE, IOLDSD
  745. INFO = ABS( IINFO )
  746. IF( IINFO.LT.0 ) THEN
  747. RETURN
  748. ELSE
  749. RESULT( NTEST ) = ULPINV
  750. RESULT( NTEST+1 ) = ULPINV
  751. RESULT( NTEST+2 ) = ULPINV
  752. GO TO 150
  753. END IF
  754. END IF
  755. *
  756. * Do tests 4 and 5.
  757. *
  758. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  759. *
  760. CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  761. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  762. *
  763. NTEST = NTEST + 2
  764. CALL CHEEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
  765. $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
  766. $ WORK, LWORK, RWORK, IWORK,
  767. $ IWORK( 5*N+1 ), IINFO )
  768. IF( IINFO.NE.0 ) THEN
  769. WRITE( NOUNIT, FMT = 9999 )
  770. $ 'CHEEVX_2STAGE(N,A,' // UPLO //
  771. $ ')', IINFO, N, JTYPE, IOLDSD
  772. INFO = ABS( IINFO )
  773. IF( IINFO.LT.0 ) THEN
  774. RETURN
  775. ELSE
  776. RESULT( NTEST ) = ULPINV
  777. GO TO 150
  778. END IF
  779. END IF
  780. *
  781. * Do test 6.
  782. *
  783. TEMP1 = ZERO
  784. TEMP2 = ZERO
  785. DO 140 J = 1, N
  786. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  787. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  788. 140 CONTINUE
  789. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  790. $ ULP*MAX( TEMP1, TEMP2 ) )
  791. *
  792. 150 CONTINUE
  793. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  794. *
  795. NTEST = NTEST + 1
  796. *
  797. CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  798. $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
  799. $ IWORK, IWORK( 5*N+1 ), IINFO )
  800. IF( IINFO.NE.0 ) THEN
  801. WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO //
  802. $ ')', IINFO, N, JTYPE, IOLDSD
  803. INFO = ABS( IINFO )
  804. IF( IINFO.LT.0 ) THEN
  805. RETURN
  806. ELSE
  807. RESULT( NTEST ) = ULPINV
  808. GO TO 160
  809. END IF
  810. END IF
  811. *
  812. * Do tests 7 and 8.
  813. *
  814. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  815. *
  816. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  817. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  818. *
  819. NTEST = NTEST + 2
  820. *
  821. CALL CHEEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
  822. $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
  823. $ WORK, LWORK, RWORK, IWORK,
  824. $ IWORK( 5*N+1 ), IINFO )
  825. IF( IINFO.NE.0 ) THEN
  826. WRITE( NOUNIT, FMT = 9999 )
  827. $ 'CHEEVX_2STAGE(N,I,' // UPLO //
  828. $ ')', IINFO, N, JTYPE, IOLDSD
  829. INFO = ABS( IINFO )
  830. IF( IINFO.LT.0 ) THEN
  831. RETURN
  832. ELSE
  833. RESULT( NTEST ) = ULPINV
  834. GO TO 160
  835. END IF
  836. END IF
  837. *
  838. * Do test 9.
  839. *
  840. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  841. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  842. IF( N.GT.0 ) THEN
  843. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  844. ELSE
  845. TEMP3 = ZERO
  846. END IF
  847. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  848. $ MAX( UNFL, TEMP3*ULP )
  849. *
  850. 160 CONTINUE
  851. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  852. *
  853. NTEST = NTEST + 1
  854. *
  855. CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  856. $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
  857. $ IWORK, IWORK( 5*N+1 ), IINFO )
  858. IF( IINFO.NE.0 ) THEN
  859. WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO //
  860. $ ')', IINFO, N, JTYPE, IOLDSD
  861. INFO = ABS( IINFO )
  862. IF( IINFO.LT.0 ) THEN
  863. RETURN
  864. ELSE
  865. RESULT( NTEST ) = ULPINV
  866. GO TO 170
  867. END IF
  868. END IF
  869. *
  870. * Do tests 10 and 11.
  871. *
  872. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  873. *
  874. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  875. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  876. *
  877. NTEST = NTEST + 2
  878. *
  879. CALL CHEEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
  880. $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
  881. $ WORK, LWORK, RWORK, IWORK,
  882. $ IWORK( 5*N+1 ), IINFO )
  883. IF( IINFO.NE.0 ) THEN
  884. WRITE( NOUNIT, FMT = 9999 )
  885. $ 'CHEEVX_2STAGE(N,V,' // UPLO //
  886. $ ')', IINFO, N, JTYPE, IOLDSD
  887. INFO = ABS( IINFO )
  888. IF( IINFO.LT.0 ) THEN
  889. RETURN
  890. ELSE
  891. RESULT( NTEST ) = ULPINV
  892. GO TO 170
  893. END IF
  894. END IF
  895. *
  896. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  897. RESULT( NTEST ) = ULPINV
  898. GO TO 170
  899. END IF
  900. *
  901. * Do test 12.
  902. *
  903. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  904. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  905. IF( N.GT.0 ) THEN
  906. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  907. ELSE
  908. TEMP3 = ZERO
  909. END IF
  910. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  911. $ MAX( UNFL, TEMP3*ULP )
  912. *
  913. 170 CONTINUE
  914. *
  915. * Call CHPEVD and CHPEVX.
  916. *
  917. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  918. *
  919. * Load array WORK with the upper or lower triangular
  920. * part of the matrix in packed form.
  921. *
  922. IF( IUPLO.EQ.1 ) THEN
  923. INDX = 1
  924. DO 190 J = 1, N
  925. DO 180 I = 1, J
  926. WORK( INDX ) = A( I, J )
  927. INDX = INDX + 1
  928. 180 CONTINUE
  929. 190 CONTINUE
  930. ELSE
  931. INDX = 1
  932. DO 210 J = 1, N
  933. DO 200 I = J, N
  934. WORK( INDX ) = A( I, J )
  935. INDX = INDX + 1
  936. 200 CONTINUE
  937. 210 CONTINUE
  938. END IF
  939. *
  940. NTEST = NTEST + 1
  941. INDWRK = N*( N+1 ) / 2 + 1
  942. CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
  943. $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
  944. $ LIWEDC, IINFO )
  945. IF( IINFO.NE.0 ) THEN
  946. WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO //
  947. $ ')', IINFO, N, JTYPE, IOLDSD
  948. INFO = ABS( IINFO )
  949. IF( IINFO.LT.0 ) THEN
  950. RETURN
  951. ELSE
  952. RESULT( NTEST ) = ULPINV
  953. RESULT( NTEST+1 ) = ULPINV
  954. RESULT( NTEST+2 ) = ULPINV
  955. GO TO 270
  956. END IF
  957. END IF
  958. *
  959. * Do tests 13 and 14.
  960. *
  961. CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  962. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  963. *
  964. IF( IUPLO.EQ.1 ) THEN
  965. INDX = 1
  966. DO 230 J = 1, N
  967. DO 220 I = 1, J
  968. WORK( INDX ) = A( I, J )
  969. INDX = INDX + 1
  970. 220 CONTINUE
  971. 230 CONTINUE
  972. ELSE
  973. INDX = 1
  974. DO 250 J = 1, N
  975. DO 240 I = J, N
  976. WORK( INDX ) = A( I, J )
  977. INDX = INDX + 1
  978. 240 CONTINUE
  979. 250 CONTINUE
  980. END IF
  981. *
  982. NTEST = NTEST + 2
  983. INDWRK = N*( N+1 ) / 2 + 1
  984. CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
  985. $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
  986. $ LIWEDC, IINFO )
  987. IF( IINFO.NE.0 ) THEN
  988. WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO //
  989. $ ')', IINFO, N, JTYPE, IOLDSD
  990. INFO = ABS( IINFO )
  991. IF( IINFO.LT.0 ) THEN
  992. RETURN
  993. ELSE
  994. RESULT( NTEST ) = ULPINV
  995. GO TO 270
  996. END IF
  997. END IF
  998. *
  999. * Do test 15.
  1000. *
  1001. TEMP1 = ZERO
  1002. TEMP2 = ZERO
  1003. DO 260 J = 1, N
  1004. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1005. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1006. 260 CONTINUE
  1007. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1008. $ ULP*MAX( TEMP1, TEMP2 ) )
  1009. *
  1010. * Load array WORK with the upper or lower triangular part
  1011. * of the matrix in packed form.
  1012. *
  1013. 270 CONTINUE
  1014. IF( IUPLO.EQ.1 ) THEN
  1015. INDX = 1
  1016. DO 290 J = 1, N
  1017. DO 280 I = 1, J
  1018. WORK( INDX ) = A( I, J )
  1019. INDX = INDX + 1
  1020. 280 CONTINUE
  1021. 290 CONTINUE
  1022. ELSE
  1023. INDX = 1
  1024. DO 310 J = 1, N
  1025. DO 300 I = J, N
  1026. WORK( INDX ) = A( I, J )
  1027. INDX = INDX + 1
  1028. 300 CONTINUE
  1029. 310 CONTINUE
  1030. END IF
  1031. *
  1032. NTEST = NTEST + 1
  1033. *
  1034. IF( N.GT.0 ) THEN
  1035. TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
  1036. IF( IL.NE.1 ) THEN
  1037. VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
  1038. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1039. ELSE IF( N.GT.0 ) THEN
  1040. VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
  1041. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1042. END IF
  1043. IF( IU.NE.N ) THEN
  1044. VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
  1045. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1046. ELSE IF( N.GT.0 ) THEN
  1047. VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
  1048. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1049. END IF
  1050. ELSE
  1051. TEMP3 = ZERO
  1052. VL = ZERO
  1053. VU = ONE
  1054. END IF
  1055. *
  1056. CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
  1057. $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
  1058. $ IWORK( 5*N+1 ), IINFO )
  1059. IF( IINFO.NE.0 ) THEN
  1060. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO //
  1061. $ ')', IINFO, N, JTYPE, IOLDSD
  1062. INFO = ABS( IINFO )
  1063. IF( IINFO.LT.0 ) THEN
  1064. RETURN
  1065. ELSE
  1066. RESULT( NTEST ) = ULPINV
  1067. RESULT( NTEST+1 ) = ULPINV
  1068. RESULT( NTEST+2 ) = ULPINV
  1069. GO TO 370
  1070. END IF
  1071. END IF
  1072. *
  1073. * Do tests 16 and 17.
  1074. *
  1075. CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1076. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1077. *
  1078. NTEST = NTEST + 2
  1079. *
  1080. IF( IUPLO.EQ.1 ) THEN
  1081. INDX = 1
  1082. DO 330 J = 1, N
  1083. DO 320 I = 1, J
  1084. WORK( INDX ) = A( I, J )
  1085. INDX = INDX + 1
  1086. 320 CONTINUE
  1087. 330 CONTINUE
  1088. ELSE
  1089. INDX = 1
  1090. DO 350 J = 1, N
  1091. DO 340 I = J, N
  1092. WORK( INDX ) = A( I, J )
  1093. INDX = INDX + 1
  1094. 340 CONTINUE
  1095. 350 CONTINUE
  1096. END IF
  1097. *
  1098. CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
  1099. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1100. $ IWORK( 5*N+1 ), IINFO )
  1101. IF( IINFO.NE.0 ) THEN
  1102. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO //
  1103. $ ')', IINFO, N, JTYPE, IOLDSD
  1104. INFO = ABS( IINFO )
  1105. IF( IINFO.LT.0 ) THEN
  1106. RETURN
  1107. ELSE
  1108. RESULT( NTEST ) = ULPINV
  1109. GO TO 370
  1110. END IF
  1111. END IF
  1112. *
  1113. * Do test 18.
  1114. *
  1115. TEMP1 = ZERO
  1116. TEMP2 = ZERO
  1117. DO 360 J = 1, N
  1118. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1119. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1120. 360 CONTINUE
  1121. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1122. $ ULP*MAX( TEMP1, TEMP2 ) )
  1123. *
  1124. 370 CONTINUE
  1125. NTEST = NTEST + 1
  1126. IF( IUPLO.EQ.1 ) THEN
  1127. INDX = 1
  1128. DO 390 J = 1, N
  1129. DO 380 I = 1, J
  1130. WORK( INDX ) = A( I, J )
  1131. INDX = INDX + 1
  1132. 380 CONTINUE
  1133. 390 CONTINUE
  1134. ELSE
  1135. INDX = 1
  1136. DO 410 J = 1, N
  1137. DO 400 I = J, N
  1138. WORK( INDX ) = A( I, J )
  1139. INDX = INDX + 1
  1140. 400 CONTINUE
  1141. 410 CONTINUE
  1142. END IF
  1143. *
  1144. CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
  1145. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1146. $ IWORK( 5*N+1 ), IINFO )
  1147. IF( IINFO.NE.0 ) THEN
  1148. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO //
  1149. $ ')', IINFO, N, JTYPE, IOLDSD
  1150. INFO = ABS( IINFO )
  1151. IF( IINFO.LT.0 ) THEN
  1152. RETURN
  1153. ELSE
  1154. RESULT( NTEST ) = ULPINV
  1155. RESULT( NTEST+1 ) = ULPINV
  1156. RESULT( NTEST+2 ) = ULPINV
  1157. GO TO 460
  1158. END IF
  1159. END IF
  1160. *
  1161. * Do tests 19 and 20.
  1162. *
  1163. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1164. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1165. *
  1166. NTEST = NTEST + 2
  1167. *
  1168. IF( IUPLO.EQ.1 ) THEN
  1169. INDX = 1
  1170. DO 430 J = 1, N
  1171. DO 420 I = 1, J
  1172. WORK( INDX ) = A( I, J )
  1173. INDX = INDX + 1
  1174. 420 CONTINUE
  1175. 430 CONTINUE
  1176. ELSE
  1177. INDX = 1
  1178. DO 450 J = 1, N
  1179. DO 440 I = J, N
  1180. WORK( INDX ) = A( I, J )
  1181. INDX = INDX + 1
  1182. 440 CONTINUE
  1183. 450 CONTINUE
  1184. END IF
  1185. *
  1186. CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
  1187. $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
  1188. $ IWORK( 5*N+1 ), IINFO )
  1189. IF( IINFO.NE.0 ) THEN
  1190. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO //
  1191. $ ')', IINFO, N, JTYPE, IOLDSD
  1192. INFO = ABS( IINFO )
  1193. IF( IINFO.LT.0 ) THEN
  1194. RETURN
  1195. ELSE
  1196. RESULT( NTEST ) = ULPINV
  1197. GO TO 460
  1198. END IF
  1199. END IF
  1200. *
  1201. * Do test 21.
  1202. *
  1203. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1204. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1205. IF( N.GT.0 ) THEN
  1206. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1207. ELSE
  1208. TEMP3 = ZERO
  1209. END IF
  1210. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1211. $ MAX( UNFL, TEMP3*ULP )
  1212. *
  1213. 460 CONTINUE
  1214. NTEST = NTEST + 1
  1215. IF( IUPLO.EQ.1 ) THEN
  1216. INDX = 1
  1217. DO 480 J = 1, N
  1218. DO 470 I = 1, J
  1219. WORK( INDX ) = A( I, J )
  1220. INDX = INDX + 1
  1221. 470 CONTINUE
  1222. 480 CONTINUE
  1223. ELSE
  1224. INDX = 1
  1225. DO 500 J = 1, N
  1226. DO 490 I = J, N
  1227. WORK( INDX ) = A( I, J )
  1228. INDX = INDX + 1
  1229. 490 CONTINUE
  1230. 500 CONTINUE
  1231. END IF
  1232. *
  1233. CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
  1234. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1235. $ IWORK( 5*N+1 ), IINFO )
  1236. IF( IINFO.NE.0 ) THEN
  1237. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO //
  1238. $ ')', IINFO, N, JTYPE, IOLDSD
  1239. INFO = ABS( IINFO )
  1240. IF( IINFO.LT.0 ) THEN
  1241. RETURN
  1242. ELSE
  1243. RESULT( NTEST ) = ULPINV
  1244. RESULT( NTEST+1 ) = ULPINV
  1245. RESULT( NTEST+2 ) = ULPINV
  1246. GO TO 550
  1247. END IF
  1248. END IF
  1249. *
  1250. * Do tests 22 and 23.
  1251. *
  1252. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1253. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1254. *
  1255. NTEST = NTEST + 2
  1256. *
  1257. IF( IUPLO.EQ.1 ) THEN
  1258. INDX = 1
  1259. DO 520 J = 1, N
  1260. DO 510 I = 1, J
  1261. WORK( INDX ) = A( I, J )
  1262. INDX = INDX + 1
  1263. 510 CONTINUE
  1264. 520 CONTINUE
  1265. ELSE
  1266. INDX = 1
  1267. DO 540 J = 1, N
  1268. DO 530 I = J, N
  1269. WORK( INDX ) = A( I, J )
  1270. INDX = INDX + 1
  1271. 530 CONTINUE
  1272. 540 CONTINUE
  1273. END IF
  1274. *
  1275. CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
  1276. $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
  1277. $ IWORK( 5*N+1 ), IINFO )
  1278. IF( IINFO.NE.0 ) THEN
  1279. WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO //
  1280. $ ')', IINFO, N, JTYPE, IOLDSD
  1281. INFO = ABS( IINFO )
  1282. IF( IINFO.LT.0 ) THEN
  1283. RETURN
  1284. ELSE
  1285. RESULT( NTEST ) = ULPINV
  1286. GO TO 550
  1287. END IF
  1288. END IF
  1289. *
  1290. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  1291. RESULT( NTEST ) = ULPINV
  1292. GO TO 550
  1293. END IF
  1294. *
  1295. * Do test 24.
  1296. *
  1297. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1298. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1299. IF( N.GT.0 ) THEN
  1300. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1301. ELSE
  1302. TEMP3 = ZERO
  1303. END IF
  1304. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1305. $ MAX( UNFL, TEMP3*ULP )
  1306. *
  1307. 550 CONTINUE
  1308. *
  1309. * Call CHBEVD and CHBEVX.
  1310. *
  1311. IF( JTYPE.LE.7 ) THEN
  1312. KD = 0
  1313. ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
  1314. KD = MAX( N-1, 0 )
  1315. ELSE
  1316. KD = IHBW
  1317. END IF
  1318. *
  1319. * Load array V with the upper or lower triangular part
  1320. * of the matrix in band form.
  1321. *
  1322. IF( IUPLO.EQ.1 ) THEN
  1323. DO 570 J = 1, N
  1324. DO 560 I = MAX( 1, J-KD ), J
  1325. V( KD+1+I-J, J ) = A( I, J )
  1326. 560 CONTINUE
  1327. 570 CONTINUE
  1328. ELSE
  1329. DO 590 J = 1, N
  1330. DO 580 I = J, MIN( N, J+KD )
  1331. V( 1+I-J, J ) = A( I, J )
  1332. 580 CONTINUE
  1333. 590 CONTINUE
  1334. END IF
  1335. *
  1336. NTEST = NTEST + 1
  1337. CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
  1338. $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  1339. IF( IINFO.NE.0 ) THEN
  1340. WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO //
  1341. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1342. INFO = ABS( IINFO )
  1343. IF( IINFO.LT.0 ) THEN
  1344. RETURN
  1345. ELSE
  1346. RESULT( NTEST ) = ULPINV
  1347. RESULT( NTEST+1 ) = ULPINV
  1348. RESULT( NTEST+2 ) = ULPINV
  1349. GO TO 650
  1350. END IF
  1351. END IF
  1352. *
  1353. * Do tests 25 and 26.
  1354. *
  1355. CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1356. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1357. *
  1358. IF( IUPLO.EQ.1 ) THEN
  1359. DO 610 J = 1, N
  1360. DO 600 I = MAX( 1, J-KD ), J
  1361. V( KD+1+I-J, J ) = A( I, J )
  1362. 600 CONTINUE
  1363. 610 CONTINUE
  1364. ELSE
  1365. DO 630 J = 1, N
  1366. DO 620 I = J, MIN( N, J+KD )
  1367. V( 1+I-J, J ) = A( I, J )
  1368. 620 CONTINUE
  1369. 630 CONTINUE
  1370. END IF
  1371. *
  1372. NTEST = NTEST + 2
  1373. CALL CHBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3,
  1374. $ Z, LDU, WORK, LWORK, RWORK,
  1375. $ LRWEDC, IWORK, LIWEDC, IINFO )
  1376. IF( IINFO.NE.0 ) THEN
  1377. WRITE( NOUNIT, FMT = 9998 )
  1378. $ 'CHBEVD_2STAGE(N,' // UPLO //
  1379. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1380. INFO = ABS( IINFO )
  1381. IF( IINFO.LT.0 ) THEN
  1382. RETURN
  1383. ELSE
  1384. RESULT( NTEST ) = ULPINV
  1385. GO TO 650
  1386. END IF
  1387. END IF
  1388. *
  1389. * Do test 27.
  1390. *
  1391. TEMP1 = ZERO
  1392. TEMP2 = ZERO
  1393. DO 640 J = 1, N
  1394. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1395. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1396. 640 CONTINUE
  1397. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1398. $ ULP*MAX( TEMP1, TEMP2 ) )
  1399. *
  1400. * Load array V with the upper or lower triangular part
  1401. * of the matrix in band form.
  1402. *
  1403. 650 CONTINUE
  1404. IF( IUPLO.EQ.1 ) THEN
  1405. DO 670 J = 1, N
  1406. DO 660 I = MAX( 1, J-KD ), J
  1407. V( KD+1+I-J, J ) = A( I, J )
  1408. 660 CONTINUE
  1409. 670 CONTINUE
  1410. ELSE
  1411. DO 690 J = 1, N
  1412. DO 680 I = J, MIN( N, J+KD )
  1413. V( 1+I-J, J ) = A( I, J )
  1414. 680 CONTINUE
  1415. 690 CONTINUE
  1416. END IF
  1417. *
  1418. NTEST = NTEST + 1
  1419. CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
  1420. $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
  1421. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1422. IF( IINFO.NE.0 ) THEN
  1423. WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO //
  1424. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1425. INFO = ABS( IINFO )
  1426. IF( IINFO.LT.0 ) THEN
  1427. RETURN
  1428. ELSE
  1429. RESULT( NTEST ) = ULPINV
  1430. RESULT( NTEST+1 ) = ULPINV
  1431. RESULT( NTEST+2 ) = ULPINV
  1432. GO TO 750
  1433. END IF
  1434. END IF
  1435. *
  1436. * Do tests 28 and 29.
  1437. *
  1438. CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1439. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1440. *
  1441. NTEST = NTEST + 2
  1442. *
  1443. IF( IUPLO.EQ.1 ) THEN
  1444. DO 710 J = 1, N
  1445. DO 700 I = MAX( 1, J-KD ), J
  1446. V( KD+1+I-J, J ) = A( I, J )
  1447. 700 CONTINUE
  1448. 710 CONTINUE
  1449. ELSE
  1450. DO 730 J = 1, N
  1451. DO 720 I = J, MIN( N, J+KD )
  1452. V( 1+I-J, J ) = A( I, J )
  1453. 720 CONTINUE
  1454. 730 CONTINUE
  1455. END IF
  1456. *
  1457. CALL CHBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
  1458. $ U, LDU, VL, VU, IL, IU, ABSTOL,
  1459. $ M2, WA2, Z, LDU, WORK, LWORK,
  1460. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1461. IF( IINFO.NE.0 ) THEN
  1462. WRITE( NOUNIT, FMT = 9998 )
  1463. $ 'CHBEVX_2STAGE(N,A,' // UPLO //
  1464. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1465. INFO = ABS( IINFO )
  1466. IF( IINFO.LT.0 ) THEN
  1467. RETURN
  1468. ELSE
  1469. RESULT( NTEST ) = ULPINV
  1470. GO TO 750
  1471. END IF
  1472. END IF
  1473. *
  1474. * Do test 30.
  1475. *
  1476. TEMP1 = ZERO
  1477. TEMP2 = ZERO
  1478. DO 740 J = 1, N
  1479. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1480. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1481. 740 CONTINUE
  1482. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1483. $ ULP*MAX( TEMP1, TEMP2 ) )
  1484. *
  1485. * Load array V with the upper or lower triangular part
  1486. * of the matrix in band form.
  1487. *
  1488. 750 CONTINUE
  1489. NTEST = NTEST + 1
  1490. IF( IUPLO.EQ.1 ) THEN
  1491. DO 770 J = 1, N
  1492. DO 760 I = MAX( 1, J-KD ), J
  1493. V( KD+1+I-J, J ) = A( I, J )
  1494. 760 CONTINUE
  1495. 770 CONTINUE
  1496. ELSE
  1497. DO 790 J = 1, N
  1498. DO 780 I = J, MIN( N, J+KD )
  1499. V( 1+I-J, J ) = A( I, J )
  1500. 780 CONTINUE
  1501. 790 CONTINUE
  1502. END IF
  1503. *
  1504. CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
  1505. $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
  1506. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1507. IF( IINFO.NE.0 ) THEN
  1508. WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO //
  1509. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1510. INFO = ABS( IINFO )
  1511. IF( IINFO.LT.0 ) THEN
  1512. RETURN
  1513. ELSE
  1514. RESULT( NTEST ) = ULPINV
  1515. RESULT( NTEST+1 ) = ULPINV
  1516. RESULT( NTEST+2 ) = ULPINV
  1517. GO TO 840
  1518. END IF
  1519. END IF
  1520. *
  1521. * Do tests 31 and 32.
  1522. *
  1523. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1524. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1525. *
  1526. NTEST = NTEST + 2
  1527. *
  1528. IF( IUPLO.EQ.1 ) THEN
  1529. DO 810 J = 1, N
  1530. DO 800 I = MAX( 1, J-KD ), J
  1531. V( KD+1+I-J, J ) = A( I, J )
  1532. 800 CONTINUE
  1533. 810 CONTINUE
  1534. ELSE
  1535. DO 830 J = 1, N
  1536. DO 820 I = J, MIN( N, J+KD )
  1537. V( 1+I-J, J ) = A( I, J )
  1538. 820 CONTINUE
  1539. 830 CONTINUE
  1540. END IF
  1541. CALL CHBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
  1542. $ U, LDU, VL, VU, IL, IU, ABSTOL,
  1543. $ M3, WA3, Z, LDU, WORK, LWORK,
  1544. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1545. IF( IINFO.NE.0 ) THEN
  1546. WRITE( NOUNIT, FMT = 9998 )
  1547. $ 'CHBEVX_2STAGE(N,I,' // UPLO //
  1548. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1549. INFO = ABS( IINFO )
  1550. IF( IINFO.LT.0 ) THEN
  1551. RETURN
  1552. ELSE
  1553. RESULT( NTEST ) = ULPINV
  1554. GO TO 840
  1555. END IF
  1556. END IF
  1557. *
  1558. * Do test 33.
  1559. *
  1560. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1561. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1562. IF( N.GT.0 ) THEN
  1563. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1564. ELSE
  1565. TEMP3 = ZERO
  1566. END IF
  1567. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1568. $ MAX( UNFL, TEMP3*ULP )
  1569. *
  1570. * Load array V with the upper or lower triangular part
  1571. * of the matrix in band form.
  1572. *
  1573. 840 CONTINUE
  1574. NTEST = NTEST + 1
  1575. IF( IUPLO.EQ.1 ) THEN
  1576. DO 860 J = 1, N
  1577. DO 850 I = MAX( 1, J-KD ), J
  1578. V( KD+1+I-J, J ) = A( I, J )
  1579. 850 CONTINUE
  1580. 860 CONTINUE
  1581. ELSE
  1582. DO 880 J = 1, N
  1583. DO 870 I = J, MIN( N, J+KD )
  1584. V( 1+I-J, J ) = A( I, J )
  1585. 870 CONTINUE
  1586. 880 CONTINUE
  1587. END IF
  1588. CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
  1589. $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
  1590. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1591. IF( IINFO.NE.0 ) THEN
  1592. WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO //
  1593. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1594. INFO = ABS( IINFO )
  1595. IF( IINFO.LT.0 ) THEN
  1596. RETURN
  1597. ELSE
  1598. RESULT( NTEST ) = ULPINV
  1599. RESULT( NTEST+1 ) = ULPINV
  1600. RESULT( NTEST+2 ) = ULPINV
  1601. GO TO 930
  1602. END IF
  1603. END IF
  1604. *
  1605. * Do tests 34 and 35.
  1606. *
  1607. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1608. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1609. *
  1610. NTEST = NTEST + 2
  1611. *
  1612. IF( IUPLO.EQ.1 ) THEN
  1613. DO 900 J = 1, N
  1614. DO 890 I = MAX( 1, J-KD ), J
  1615. V( KD+1+I-J, J ) = A( I, J )
  1616. 890 CONTINUE
  1617. 900 CONTINUE
  1618. ELSE
  1619. DO 920 J = 1, N
  1620. DO 910 I = J, MIN( N, J+KD )
  1621. V( 1+I-J, J ) = A( I, J )
  1622. 910 CONTINUE
  1623. 920 CONTINUE
  1624. END IF
  1625. CALL CHBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
  1626. $ U, LDU, VL, VU, IL, IU, ABSTOL,
  1627. $ M3, WA3, Z, LDU, WORK, LWORK,
  1628. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1629. IF( IINFO.NE.0 ) THEN
  1630. WRITE( NOUNIT, FMT = 9998 )
  1631. $ 'CHBEVX_2STAGE(N,V,' // UPLO //
  1632. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1633. INFO = ABS( IINFO )
  1634. IF( IINFO.LT.0 ) THEN
  1635. RETURN
  1636. ELSE
  1637. RESULT( NTEST ) = ULPINV
  1638. GO TO 930
  1639. END IF
  1640. END IF
  1641. *
  1642. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  1643. RESULT( NTEST ) = ULPINV
  1644. GO TO 930
  1645. END IF
  1646. *
  1647. * Do test 36.
  1648. *
  1649. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1650. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1651. IF( N.GT.0 ) THEN
  1652. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1653. ELSE
  1654. TEMP3 = ZERO
  1655. END IF
  1656. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1657. $ MAX( UNFL, TEMP3*ULP )
  1658. *
  1659. 930 CONTINUE
  1660. *
  1661. * Call CHEEV
  1662. *
  1663. CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
  1664. *
  1665. NTEST = NTEST + 1
  1666. CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
  1667. $ IINFO )
  1668. IF( IINFO.NE.0 ) THEN
  1669. WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')',
  1670. $ IINFO, N, JTYPE, IOLDSD
  1671. INFO = ABS( IINFO )
  1672. IF( IINFO.LT.0 ) THEN
  1673. RETURN
  1674. ELSE
  1675. RESULT( NTEST ) = ULPINV
  1676. RESULT( NTEST+1 ) = ULPINV
  1677. RESULT( NTEST+2 ) = ULPINV
  1678. GO TO 950
  1679. END IF
  1680. END IF
  1681. *
  1682. * Do tests 37 and 38
  1683. *
  1684. CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
  1685. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1686. *
  1687. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1688. *
  1689. NTEST = NTEST + 2
  1690. CALL CHEEV_2STAGE( 'N', UPLO, N, A, LDU, D3,
  1691. $ WORK, LWORK, RWORK, IINFO )
  1692. IF( IINFO.NE.0 ) THEN
  1693. WRITE( NOUNIT, FMT = 9999 )
  1694. $ 'CHEEV_2STAGE(N,' // UPLO // ')',
  1695. $ IINFO, N, JTYPE, IOLDSD
  1696. INFO = ABS( IINFO )
  1697. IF( IINFO.LT.0 ) THEN
  1698. RETURN
  1699. ELSE
  1700. RESULT( NTEST ) = ULPINV
  1701. GO TO 950
  1702. END IF
  1703. END IF
  1704. *
  1705. * Do test 39
  1706. *
  1707. TEMP1 = ZERO
  1708. TEMP2 = ZERO
  1709. DO 940 J = 1, N
  1710. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1711. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1712. 940 CONTINUE
  1713. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1714. $ ULP*MAX( TEMP1, TEMP2 ) )
  1715. *
  1716. 950 CONTINUE
  1717. *
  1718. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1719. *
  1720. * Call CHPEV
  1721. *
  1722. * Load array WORK with the upper or lower triangular
  1723. * part of the matrix in packed form.
  1724. *
  1725. IF( IUPLO.EQ.1 ) THEN
  1726. INDX = 1
  1727. DO 970 J = 1, N
  1728. DO 960 I = 1, J
  1729. WORK( INDX ) = A( I, J )
  1730. INDX = INDX + 1
  1731. 960 CONTINUE
  1732. 970 CONTINUE
  1733. ELSE
  1734. INDX = 1
  1735. DO 990 J = 1, N
  1736. DO 980 I = J, N
  1737. WORK( INDX ) = A( I, J )
  1738. INDX = INDX + 1
  1739. 980 CONTINUE
  1740. 990 CONTINUE
  1741. END IF
  1742. *
  1743. NTEST = NTEST + 1
  1744. INDWRK = N*( N+1 ) / 2 + 1
  1745. CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
  1746. $ WORK( INDWRK ), RWORK, IINFO )
  1747. IF( IINFO.NE.0 ) THEN
  1748. WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')',
  1749. $ IINFO, N, JTYPE, IOLDSD
  1750. INFO = ABS( IINFO )
  1751. IF( IINFO.LT.0 ) THEN
  1752. RETURN
  1753. ELSE
  1754. RESULT( NTEST ) = ULPINV
  1755. RESULT( NTEST+1 ) = ULPINV
  1756. RESULT( NTEST+2 ) = ULPINV
  1757. GO TO 1050
  1758. END IF
  1759. END IF
  1760. *
  1761. * Do tests 40 and 41.
  1762. *
  1763. CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1764. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1765. *
  1766. IF( IUPLO.EQ.1 ) THEN
  1767. INDX = 1
  1768. DO 1010 J = 1, N
  1769. DO 1000 I = 1, J
  1770. WORK( INDX ) = A( I, J )
  1771. INDX = INDX + 1
  1772. 1000 CONTINUE
  1773. 1010 CONTINUE
  1774. ELSE
  1775. INDX = 1
  1776. DO 1030 J = 1, N
  1777. DO 1020 I = J, N
  1778. WORK( INDX ) = A( I, J )
  1779. INDX = INDX + 1
  1780. 1020 CONTINUE
  1781. 1030 CONTINUE
  1782. END IF
  1783. *
  1784. NTEST = NTEST + 2
  1785. INDWRK = N*( N+1 ) / 2 + 1
  1786. CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
  1787. $ WORK( INDWRK ), RWORK, IINFO )
  1788. IF( IINFO.NE.0 ) THEN
  1789. WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')',
  1790. $ IINFO, N, JTYPE, IOLDSD
  1791. INFO = ABS( IINFO )
  1792. IF( IINFO.LT.0 ) THEN
  1793. RETURN
  1794. ELSE
  1795. RESULT( NTEST ) = ULPINV
  1796. GO TO 1050
  1797. END IF
  1798. END IF
  1799. *
  1800. * Do test 42
  1801. *
  1802. TEMP1 = ZERO
  1803. TEMP2 = ZERO
  1804. DO 1040 J = 1, N
  1805. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1806. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1807. 1040 CONTINUE
  1808. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1809. $ ULP*MAX( TEMP1, TEMP2 ) )
  1810. *
  1811. 1050 CONTINUE
  1812. *
  1813. * Call CHBEV
  1814. *
  1815. IF( JTYPE.LE.7 ) THEN
  1816. KD = 0
  1817. ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
  1818. KD = MAX( N-1, 0 )
  1819. ELSE
  1820. KD = IHBW
  1821. END IF
  1822. *
  1823. * Load array V with the upper or lower triangular part
  1824. * of the matrix in band form.
  1825. *
  1826. IF( IUPLO.EQ.1 ) THEN
  1827. DO 1070 J = 1, N
  1828. DO 1060 I = MAX( 1, J-KD ), J
  1829. V( KD+1+I-J, J ) = A( I, J )
  1830. 1060 CONTINUE
  1831. 1070 CONTINUE
  1832. ELSE
  1833. DO 1090 J = 1, N
  1834. DO 1080 I = J, MIN( N, J+KD )
  1835. V( 1+I-J, J ) = A( I, J )
  1836. 1080 CONTINUE
  1837. 1090 CONTINUE
  1838. END IF
  1839. *
  1840. NTEST = NTEST + 1
  1841. CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
  1842. $ RWORK, IINFO )
  1843. IF( IINFO.NE.0 ) THEN
  1844. WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')',
  1845. $ IINFO, N, KD, JTYPE, IOLDSD
  1846. INFO = ABS( IINFO )
  1847. IF( IINFO.LT.0 ) THEN
  1848. RETURN
  1849. ELSE
  1850. RESULT( NTEST ) = ULPINV
  1851. RESULT( NTEST+1 ) = ULPINV
  1852. RESULT( NTEST+2 ) = ULPINV
  1853. GO TO 1140
  1854. END IF
  1855. END IF
  1856. *
  1857. * Do tests 43 and 44.
  1858. *
  1859. CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1860. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1861. *
  1862. IF( IUPLO.EQ.1 ) THEN
  1863. DO 1110 J = 1, N
  1864. DO 1100 I = MAX( 1, J-KD ), J
  1865. V( KD+1+I-J, J ) = A( I, J )
  1866. 1100 CONTINUE
  1867. 1110 CONTINUE
  1868. ELSE
  1869. DO 1130 J = 1, N
  1870. DO 1120 I = J, MIN( N, J+KD )
  1871. V( 1+I-J, J ) = A( I, J )
  1872. 1120 CONTINUE
  1873. 1130 CONTINUE
  1874. END IF
  1875. *
  1876. NTEST = NTEST + 2
  1877. CALL CHBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
  1878. $ WORK, LWORK, RWORK, IINFO )
  1879. IF( IINFO.NE.0 ) THEN
  1880. WRITE( NOUNIT, FMT = 9998 )
  1881. $ 'CHBEV_2STAGE(N,' // UPLO // ')',
  1882. $ IINFO, N, KD, JTYPE, IOLDSD
  1883. INFO = ABS( IINFO )
  1884. IF( IINFO.LT.0 ) THEN
  1885. RETURN
  1886. ELSE
  1887. RESULT( NTEST ) = ULPINV
  1888. GO TO 1140
  1889. END IF
  1890. END IF
  1891. *
  1892. 1140 CONTINUE
  1893. *
  1894. * Do test 45.
  1895. *
  1896. TEMP1 = ZERO
  1897. TEMP2 = ZERO
  1898. DO 1150 J = 1, N
  1899. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1900. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1901. 1150 CONTINUE
  1902. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1903. $ ULP*MAX( TEMP1, TEMP2 ) )
  1904. *
  1905. CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
  1906. NTEST = NTEST + 1
  1907. CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  1908. $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
  1909. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1910. $ IINFO )
  1911. IF( IINFO.NE.0 ) THEN
  1912. WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO //
  1913. $ ')', IINFO, N, JTYPE, IOLDSD
  1914. INFO = ABS( IINFO )
  1915. IF( IINFO.LT.0 ) THEN
  1916. RETURN
  1917. ELSE
  1918. RESULT( NTEST ) = ULPINV
  1919. RESULT( NTEST+1 ) = ULPINV
  1920. RESULT( NTEST+2 ) = ULPINV
  1921. GO TO 1170
  1922. END IF
  1923. END IF
  1924. *
  1925. * Do tests 45 and 46 (or ... )
  1926. *
  1927. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1928. *
  1929. CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1930. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1931. *
  1932. NTEST = NTEST + 2
  1933. CALL CHEEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
  1934. $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
  1935. $ IWORK, WORK, LWORK, RWORK, LRWORK,
  1936. $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
  1937. IF( IINFO.NE.0 ) THEN
  1938. WRITE( NOUNIT, FMT = 9999 )
  1939. $ 'CHEEVR_2STAGE(N,A,' // UPLO //
  1940. $ ')', IINFO, N, JTYPE, IOLDSD
  1941. INFO = ABS( IINFO )
  1942. IF( IINFO.LT.0 ) THEN
  1943. RETURN
  1944. ELSE
  1945. RESULT( NTEST ) = ULPINV
  1946. GO TO 1170
  1947. END IF
  1948. END IF
  1949. *
  1950. * Do test 47 (or ... )
  1951. *
  1952. TEMP1 = ZERO
  1953. TEMP2 = ZERO
  1954. DO 1160 J = 1, N
  1955. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1956. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1957. 1160 CONTINUE
  1958. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1959. $ ULP*MAX( TEMP1, TEMP2 ) )
  1960. *
  1961. 1170 CONTINUE
  1962. *
  1963. NTEST = NTEST + 1
  1964. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1965. CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  1966. $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
  1967. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1968. $ IINFO )
  1969. IF( IINFO.NE.0 ) THEN
  1970. WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO //
  1971. $ ')', IINFO, N, JTYPE, IOLDSD
  1972. INFO = ABS( IINFO )
  1973. IF( IINFO.LT.0 ) THEN
  1974. RETURN
  1975. ELSE
  1976. RESULT( NTEST ) = ULPINV
  1977. RESULT( NTEST+1 ) = ULPINV
  1978. RESULT( NTEST+2 ) = ULPINV
  1979. GO TO 1180
  1980. END IF
  1981. END IF
  1982. *
  1983. * Do tests 48 and 49 (or +??)
  1984. *
  1985. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1986. *
  1987. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1988. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1989. *
  1990. NTEST = NTEST + 2
  1991. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  1992. CALL CHEEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
  1993. $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
  1994. $ IWORK, WORK, LWORK, RWORK, LRWORK,
  1995. $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
  1996. IF( IINFO.NE.0 ) THEN
  1997. WRITE( NOUNIT, FMT = 9999 )
  1998. $ 'CHEEVR_2STAGE(N,I,' // UPLO //
  1999. $ ')', IINFO, N, JTYPE, IOLDSD
  2000. INFO = ABS( IINFO )
  2001. IF( IINFO.LT.0 ) THEN
  2002. RETURN
  2003. ELSE
  2004. RESULT( NTEST ) = ULPINV
  2005. GO TO 1180
  2006. END IF
  2007. END IF
  2008. *
  2009. * Do test 50 (or +??)
  2010. *
  2011. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  2012. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  2013. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  2014. $ MAX( UNFL, ULP*TEMP3 )
  2015. 1180 CONTINUE
  2016. *
  2017. NTEST = NTEST + 1
  2018. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  2019. CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  2020. $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
  2021. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  2022. $ IINFO )
  2023. IF( IINFO.NE.0 ) THEN
  2024. WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO //
  2025. $ ')', IINFO, N, JTYPE, IOLDSD
  2026. INFO = ABS( IINFO )
  2027. IF( IINFO.LT.0 ) THEN
  2028. RETURN
  2029. ELSE
  2030. RESULT( NTEST ) = ULPINV
  2031. RESULT( NTEST+1 ) = ULPINV
  2032. RESULT( NTEST+2 ) = ULPINV
  2033. GO TO 1190
  2034. END IF
  2035. END IF
  2036. *
  2037. * Do tests 51 and 52 (or +??)
  2038. *
  2039. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  2040. *
  2041. CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  2042. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  2043. *
  2044. NTEST = NTEST + 2
  2045. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  2046. CALL CHEEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
  2047. $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
  2048. $ IWORK, WORK, LWORK, RWORK, LRWORK,
  2049. $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
  2050. IF( IINFO.NE.0 ) THEN
  2051. WRITE( NOUNIT, FMT = 9999 )
  2052. $ 'CHEEVR_2STAGE(N,V,' // UPLO //
  2053. $ ')', IINFO, N, JTYPE, IOLDSD
  2054. INFO = ABS( IINFO )
  2055. IF( IINFO.LT.0 ) THEN
  2056. RETURN
  2057. ELSE
  2058. RESULT( NTEST ) = ULPINV
  2059. GO TO 1190
  2060. END IF
  2061. END IF
  2062. *
  2063. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  2064. RESULT( NTEST ) = ULPINV
  2065. GO TO 1190
  2066. END IF
  2067. *
  2068. * Do test 52 (or +??)
  2069. *
  2070. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  2071. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  2072. IF( N.GT.0 ) THEN
  2073. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  2074. ELSE
  2075. TEMP3 = ZERO
  2076. END IF
  2077. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  2078. $ MAX( UNFL, TEMP3*ULP )
  2079. *
  2080. CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
  2081. *
  2082. *
  2083. *
  2084. *
  2085. * Load array V with the upper or lower triangular part
  2086. * of the matrix in band form.
  2087. *
  2088. 1190 CONTINUE
  2089. *
  2090. 1200 CONTINUE
  2091. *
  2092. * End of Loop -- Check for RESULT(j) > THRESH
  2093. *
  2094. NTESTT = NTESTT + NTEST
  2095. CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  2096. $ THRESH, NOUNIT, NERRS )
  2097. *
  2098. 1210 CONTINUE
  2099. 1220 CONTINUE
  2100. *
  2101. * Summary
  2102. *
  2103. CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 )
  2104. *
  2105. 9999 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
  2106. $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  2107. 9998 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
  2108. $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
  2109. $ ')' )
  2110. *
  2111. RETURN
  2112. *
  2113. * End of CDRVST2STG
  2114. *
  2115. END