You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsm.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. *> \brief \b DTRSM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION ALPHA
  15. * INTEGER LDA,LDB,M,N
  16. * CHARACTER DIAG,SIDE,TRANSA,UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A(LDA,*),B(LDB,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DTRSM solves one of the matrix equations
  29. *>
  30. *> op( A )*X = alpha*B, or X*op( A ) = alpha*B,
  31. *>
  32. *> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
  33. *> non-unit, upper or lower triangular matrix and op( A ) is one of
  34. *>
  35. *> op( A ) = A or op( A ) = A**T.
  36. *>
  37. *> The matrix X is overwritten on B.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] SIDE
  44. *> \verbatim
  45. *> SIDE is CHARACTER*1
  46. *> On entry, SIDE specifies whether op( A ) appears on the left
  47. *> or right of X as follows:
  48. *>
  49. *> SIDE = 'L' or 'l' op( A )*X = alpha*B.
  50. *>
  51. *> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> On entry, UPLO specifies whether the matrix A is an upper or
  58. *> lower triangular matrix as follows:
  59. *>
  60. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  61. *>
  62. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANSA
  66. *> \verbatim
  67. *> TRANSA is CHARACTER*1
  68. *> On entry, TRANSA specifies the form of op( A ) to be used in
  69. *> the matrix multiplication as follows:
  70. *>
  71. *> TRANSA = 'N' or 'n' op( A ) = A.
  72. *>
  73. *> TRANSA = 'T' or 't' op( A ) = A**T.
  74. *>
  75. *> TRANSA = 'C' or 'c' op( A ) = A**T.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] DIAG
  79. *> \verbatim
  80. *> DIAG is CHARACTER*1
  81. *> On entry, DIAG specifies whether or not A is unit triangular
  82. *> as follows:
  83. *>
  84. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  85. *>
  86. *> DIAG = 'N' or 'n' A is not assumed to be unit
  87. *> triangular.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] M
  91. *> \verbatim
  92. *> M is INTEGER
  93. *> On entry, M specifies the number of rows of B. M must be at
  94. *> least zero.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] N
  98. *> \verbatim
  99. *> N is INTEGER
  100. *> On entry, N specifies the number of columns of B. N must be
  101. *> at least zero.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] ALPHA
  105. *> \verbatim
  106. *> ALPHA is DOUBLE PRECISION.
  107. *> On entry, ALPHA specifies the scalar alpha. When alpha is
  108. *> zero then A is not referenced and B need not be set before
  109. *> entry.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] A
  113. *> \verbatim
  114. *> A is DOUBLE PRECISION array, dimension ( LDA, k ),
  115. *> where k is m when SIDE = 'L' or 'l'
  116. *> and k is n when SIDE = 'R' or 'r'.
  117. *> Before entry with UPLO = 'U' or 'u', the leading k by k
  118. *> upper triangular part of the array A must contain the upper
  119. *> triangular matrix and the strictly lower triangular part of
  120. *> A is not referenced.
  121. *> Before entry with UPLO = 'L' or 'l', the leading k by k
  122. *> lower triangular part of the array A must contain the lower
  123. *> triangular matrix and the strictly upper triangular part of
  124. *> A is not referenced.
  125. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  126. *> A are not referenced either, but are assumed to be unity.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When SIDE = 'L' or 'l' then
  134. *> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  135. *> then LDA must be at least max( 1, n ).
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] B
  139. *> \verbatim
  140. *> B is DOUBLE PRECISION array, dimension ( LDB, N )
  141. *> Before entry, the leading m by n part of the array B must
  142. *> contain the right-hand side matrix B, and on exit is
  143. *> overwritten by the solution matrix X.
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDB
  147. *> \verbatim
  148. *> LDB is INTEGER
  149. *> On entry, LDB specifies the first dimension of B as declared
  150. *> in the calling (sub) program. LDB must be at least
  151. *> max( 1, m ).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date December 2016
  163. *
  164. *> \ingroup double_blas_level3
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> Level 3 Blas routine.
  172. *>
  173. *>
  174. *> -- Written on 8-February-1989.
  175. *> Jack Dongarra, Argonne National Laboratory.
  176. *> Iain Duff, AERE Harwell.
  177. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  178. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  179. *> \endverbatim
  180. *>
  181. * =====================================================================
  182. SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
  183. *
  184. * -- Reference BLAS level3 routine (version 3.7.0) --
  185. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  186. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187. * December 2016
  188. *
  189. * .. Scalar Arguments ..
  190. DOUBLE PRECISION ALPHA
  191. INTEGER LDA,LDB,M,N
  192. CHARACTER DIAG,SIDE,TRANSA,UPLO
  193. * ..
  194. * .. Array Arguments ..
  195. DOUBLE PRECISION A(LDA,*),B(LDB,*)
  196. * ..
  197. *
  198. * =====================================================================
  199. *
  200. * .. External Functions ..
  201. LOGICAL LSAME
  202. EXTERNAL LSAME
  203. * ..
  204. * .. External Subroutines ..
  205. EXTERNAL XERBLA
  206. * ..
  207. * .. Intrinsic Functions ..
  208. INTRINSIC MAX
  209. * ..
  210. * .. Local Scalars ..
  211. DOUBLE PRECISION TEMP
  212. INTEGER I,INFO,J,K,NROWA
  213. LOGICAL LSIDE,NOUNIT,UPPER
  214. * ..
  215. * .. Parameters ..
  216. DOUBLE PRECISION ONE,ZERO
  217. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  218. * ..
  219. *
  220. * Test the input parameters.
  221. *
  222. LSIDE = LSAME(SIDE,'L')
  223. IF (LSIDE) THEN
  224. NROWA = M
  225. ELSE
  226. NROWA = N
  227. END IF
  228. NOUNIT = LSAME(DIAG,'N')
  229. UPPER = LSAME(UPLO,'U')
  230. *
  231. INFO = 0
  232. IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
  233. INFO = 1
  234. ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  235. INFO = 2
  236. ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
  237. + (.NOT.LSAME(TRANSA,'T')) .AND.
  238. + (.NOT.LSAME(TRANSA,'C'))) THEN
  239. INFO = 3
  240. ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
  241. INFO = 4
  242. ELSE IF (M.LT.0) THEN
  243. INFO = 5
  244. ELSE IF (N.LT.0) THEN
  245. INFO = 6
  246. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  247. INFO = 9
  248. ELSE IF (LDB.LT.MAX(1,M)) THEN
  249. INFO = 11
  250. END IF
  251. IF (INFO.NE.0) THEN
  252. CALL XERBLA('DTRSM ',INFO)
  253. RETURN
  254. END IF
  255. *
  256. * Quick return if possible.
  257. *
  258. IF (M.EQ.0 .OR. N.EQ.0) RETURN
  259. *
  260. * And when alpha.eq.zero.
  261. *
  262. IF (ALPHA.EQ.ZERO) THEN
  263. DO 20 J = 1,N
  264. DO 10 I = 1,M
  265. B(I,J) = ZERO
  266. 10 CONTINUE
  267. 20 CONTINUE
  268. RETURN
  269. END IF
  270. *
  271. * Start the operations.
  272. *
  273. IF (LSIDE) THEN
  274. IF (LSAME(TRANSA,'N')) THEN
  275. *
  276. * Form B := alpha*inv( A )*B.
  277. *
  278. IF (UPPER) THEN
  279. DO 60 J = 1,N
  280. IF (ALPHA.NE.ONE) THEN
  281. DO 30 I = 1,M
  282. B(I,J) = ALPHA*B(I,J)
  283. 30 CONTINUE
  284. END IF
  285. DO 50 K = M,1,-1
  286. IF (B(K,J).NE.ZERO) THEN
  287. IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
  288. DO 40 I = 1,K - 1
  289. B(I,J) = B(I,J) - B(K,J)*A(I,K)
  290. 40 CONTINUE
  291. END IF
  292. 50 CONTINUE
  293. 60 CONTINUE
  294. ELSE
  295. DO 100 J = 1,N
  296. IF (ALPHA.NE.ONE) THEN
  297. DO 70 I = 1,M
  298. B(I,J) = ALPHA*B(I,J)
  299. 70 CONTINUE
  300. END IF
  301. DO 90 K = 1,M
  302. IF (B(K,J).NE.ZERO) THEN
  303. IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
  304. DO 80 I = K + 1,M
  305. B(I,J) = B(I,J) - B(K,J)*A(I,K)
  306. 80 CONTINUE
  307. END IF
  308. 90 CONTINUE
  309. 100 CONTINUE
  310. END IF
  311. ELSE
  312. *
  313. * Form B := alpha*inv( A**T )*B.
  314. *
  315. IF (UPPER) THEN
  316. DO 130 J = 1,N
  317. DO 120 I = 1,M
  318. TEMP = ALPHA*B(I,J)
  319. DO 110 K = 1,I - 1
  320. TEMP = TEMP - A(K,I)*B(K,J)
  321. 110 CONTINUE
  322. IF (NOUNIT) TEMP = TEMP/A(I,I)
  323. B(I,J) = TEMP
  324. 120 CONTINUE
  325. 130 CONTINUE
  326. ELSE
  327. DO 160 J = 1,N
  328. DO 150 I = M,1,-1
  329. TEMP = ALPHA*B(I,J)
  330. DO 140 K = I + 1,M
  331. TEMP = TEMP - A(K,I)*B(K,J)
  332. 140 CONTINUE
  333. IF (NOUNIT) TEMP = TEMP/A(I,I)
  334. B(I,J) = TEMP
  335. 150 CONTINUE
  336. 160 CONTINUE
  337. END IF
  338. END IF
  339. ELSE
  340. IF (LSAME(TRANSA,'N')) THEN
  341. *
  342. * Form B := alpha*B*inv( A ).
  343. *
  344. IF (UPPER) THEN
  345. DO 210 J = 1,N
  346. IF (ALPHA.NE.ONE) THEN
  347. DO 170 I = 1,M
  348. B(I,J) = ALPHA*B(I,J)
  349. 170 CONTINUE
  350. END IF
  351. DO 190 K = 1,J - 1
  352. IF (A(K,J).NE.ZERO) THEN
  353. DO 180 I = 1,M
  354. B(I,J) = B(I,J) - A(K,J)*B(I,K)
  355. 180 CONTINUE
  356. END IF
  357. 190 CONTINUE
  358. IF (NOUNIT) THEN
  359. TEMP = ONE/A(J,J)
  360. DO 200 I = 1,M
  361. B(I,J) = TEMP*B(I,J)
  362. 200 CONTINUE
  363. END IF
  364. 210 CONTINUE
  365. ELSE
  366. DO 260 J = N,1,-1
  367. IF (ALPHA.NE.ONE) THEN
  368. DO 220 I = 1,M
  369. B(I,J) = ALPHA*B(I,J)
  370. 220 CONTINUE
  371. END IF
  372. DO 240 K = J + 1,N
  373. IF (A(K,J).NE.ZERO) THEN
  374. DO 230 I = 1,M
  375. B(I,J) = B(I,J) - A(K,J)*B(I,K)
  376. 230 CONTINUE
  377. END IF
  378. 240 CONTINUE
  379. IF (NOUNIT) THEN
  380. TEMP = ONE/A(J,J)
  381. DO 250 I = 1,M
  382. B(I,J) = TEMP*B(I,J)
  383. 250 CONTINUE
  384. END IF
  385. 260 CONTINUE
  386. END IF
  387. ELSE
  388. *
  389. * Form B := alpha*B*inv( A**T ).
  390. *
  391. IF (UPPER) THEN
  392. DO 310 K = N,1,-1
  393. IF (NOUNIT) THEN
  394. TEMP = ONE/A(K,K)
  395. DO 270 I = 1,M
  396. B(I,K) = TEMP*B(I,K)
  397. 270 CONTINUE
  398. END IF
  399. DO 290 J = 1,K - 1
  400. IF (A(J,K).NE.ZERO) THEN
  401. TEMP = A(J,K)
  402. DO 280 I = 1,M
  403. B(I,J) = B(I,J) - TEMP*B(I,K)
  404. 280 CONTINUE
  405. END IF
  406. 290 CONTINUE
  407. IF (ALPHA.NE.ONE) THEN
  408. DO 300 I = 1,M
  409. B(I,K) = ALPHA*B(I,K)
  410. 300 CONTINUE
  411. END IF
  412. 310 CONTINUE
  413. ELSE
  414. DO 360 K = 1,N
  415. IF (NOUNIT) THEN
  416. TEMP = ONE/A(K,K)
  417. DO 320 I = 1,M
  418. B(I,K) = TEMP*B(I,K)
  419. 320 CONTINUE
  420. END IF
  421. DO 340 J = K + 1,N
  422. IF (A(J,K).NE.ZERO) THEN
  423. TEMP = A(J,K)
  424. DO 330 I = 1,M
  425. B(I,J) = B(I,J) - TEMP*B(I,K)
  426. 330 CONTINUE
  427. END IF
  428. 340 CONTINUE
  429. IF (ALPHA.NE.ONE) THEN
  430. DO 350 I = 1,M
  431. B(I,K) = ALPHA*B(I,K)
  432. 350 CONTINUE
  433. END IF
  434. 360 CONTINUE
  435. END IF
  436. END IF
  437. END IF
  438. *
  439. RETURN
  440. *
  441. * End of DTRSM .
  442. *
  443. END