You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrmm.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. *> \brief \b DTRMM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION ALPHA
  15. * INTEGER LDA,LDB,M,N
  16. * CHARACTER DIAG,SIDE,TRANSA,UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A(LDA,*),B(LDB,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DTRMM performs one of the matrix-matrix operations
  29. *>
  30. *> B := alpha*op( A )*B, or B := alpha*B*op( A ),
  31. *>
  32. *> where alpha is a scalar, B is an m by n matrix, A is a unit, or
  33. *> non-unit, upper or lower triangular matrix and op( A ) is one of
  34. *>
  35. *> op( A ) = A or op( A ) = A**T.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] SIDE
  42. *> \verbatim
  43. *> SIDE is CHARACTER*1
  44. *> On entry, SIDE specifies whether op( A ) multiplies B from
  45. *> the left or right as follows:
  46. *>
  47. *> SIDE = 'L' or 'l' B := alpha*op( A )*B.
  48. *>
  49. *> SIDE = 'R' or 'r' B := alpha*B*op( A ).
  50. *> \endverbatim
  51. *>
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> On entry, UPLO specifies whether the matrix A is an upper or
  56. *> lower triangular matrix as follows:
  57. *>
  58. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  59. *>
  60. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] TRANSA
  64. *> \verbatim
  65. *> TRANSA is CHARACTER*1
  66. *> On entry, TRANSA specifies the form of op( A ) to be used in
  67. *> the matrix multiplication as follows:
  68. *>
  69. *> TRANSA = 'N' or 'n' op( A ) = A.
  70. *>
  71. *> TRANSA = 'T' or 't' op( A ) = A**T.
  72. *>
  73. *> TRANSA = 'C' or 'c' op( A ) = A**T.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] DIAG
  77. *> \verbatim
  78. *> DIAG is CHARACTER*1
  79. *> On entry, DIAG specifies whether or not A is unit triangular
  80. *> as follows:
  81. *>
  82. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  83. *>
  84. *> DIAG = 'N' or 'n' A is not assumed to be unit
  85. *> triangular.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] M
  89. *> \verbatim
  90. *> M is INTEGER
  91. *> On entry, M specifies the number of rows of B. M must be at
  92. *> least zero.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] N
  96. *> \verbatim
  97. *> N is INTEGER
  98. *> On entry, N specifies the number of columns of B. N must be
  99. *> at least zero.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] ALPHA
  103. *> \verbatim
  104. *> ALPHA is DOUBLE PRECISION.
  105. *> On entry, ALPHA specifies the scalar alpha. When alpha is
  106. *> zero then A is not referenced and B need not be set before
  107. *> entry.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] A
  111. *> \verbatim
  112. *> A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m
  113. *> when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  114. *> Before entry with UPLO = 'U' or 'u', the leading k by k
  115. *> upper triangular part of the array A must contain the upper
  116. *> triangular matrix and the strictly lower triangular part of
  117. *> A is not referenced.
  118. *> Before entry with UPLO = 'L' or 'l', the leading k by k
  119. *> lower triangular part of the array A must contain the lower
  120. *> triangular matrix and the strictly upper triangular part of
  121. *> A is not referenced.
  122. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  123. *> A are not referenced either, but are assumed to be unity.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDA
  127. *> \verbatim
  128. *> LDA is INTEGER
  129. *> On entry, LDA specifies the first dimension of A as declared
  130. *> in the calling (sub) program. When SIDE = 'L' or 'l' then
  131. *> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  132. *> then LDA must be at least max( 1, n ).
  133. *> \endverbatim
  134. *>
  135. *> \param[in,out] B
  136. *> \verbatim
  137. *> B is DOUBLE PRECISION array, dimension ( LDB, N )
  138. *> Before entry, the leading m by n part of the array B must
  139. *> contain the matrix B, and on exit is overwritten by the
  140. *> transformed matrix.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] LDB
  144. *> \verbatim
  145. *> LDB is INTEGER
  146. *> On entry, LDB specifies the first dimension of B as declared
  147. *> in the calling (sub) program. LDB must be at least
  148. *> max( 1, m ).
  149. *> \endverbatim
  150. *
  151. * Authors:
  152. * ========
  153. *
  154. *> \author Univ. of Tennessee
  155. *> \author Univ. of California Berkeley
  156. *> \author Univ. of Colorado Denver
  157. *> \author NAG Ltd.
  158. *
  159. *> \date December 2016
  160. *
  161. *> \ingroup double_blas_level3
  162. *
  163. *> \par Further Details:
  164. * =====================
  165. *>
  166. *> \verbatim
  167. *>
  168. *> Level 3 Blas routine.
  169. *>
  170. *> -- Written on 8-February-1989.
  171. *> Jack Dongarra, Argonne National Laboratory.
  172. *> Iain Duff, AERE Harwell.
  173. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  174. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  175. *> \endverbatim
  176. *>
  177. * =====================================================================
  178. SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
  179. *
  180. * -- Reference BLAS level3 routine (version 3.7.0) --
  181. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  182. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183. * December 2016
  184. *
  185. * .. Scalar Arguments ..
  186. DOUBLE PRECISION ALPHA
  187. INTEGER LDA,LDB,M,N
  188. CHARACTER DIAG,SIDE,TRANSA,UPLO
  189. * ..
  190. * .. Array Arguments ..
  191. DOUBLE PRECISION A(LDA,*),B(LDB,*)
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. External Functions ..
  197. LOGICAL LSAME
  198. EXTERNAL LSAME
  199. * ..
  200. * .. External Subroutines ..
  201. EXTERNAL XERBLA
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC MAX
  205. * ..
  206. * .. Local Scalars ..
  207. DOUBLE PRECISION TEMP
  208. INTEGER I,INFO,J,K,NROWA
  209. LOGICAL LSIDE,NOUNIT,UPPER
  210. * ..
  211. * .. Parameters ..
  212. DOUBLE PRECISION ONE,ZERO
  213. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  214. * ..
  215. *
  216. * Test the input parameters.
  217. *
  218. LSIDE = LSAME(SIDE,'L')
  219. IF (LSIDE) THEN
  220. NROWA = M
  221. ELSE
  222. NROWA = N
  223. END IF
  224. NOUNIT = LSAME(DIAG,'N')
  225. UPPER = LSAME(UPLO,'U')
  226. *
  227. INFO = 0
  228. IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
  229. INFO = 1
  230. ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  231. INFO = 2
  232. ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
  233. + (.NOT.LSAME(TRANSA,'T')) .AND.
  234. + (.NOT.LSAME(TRANSA,'C'))) THEN
  235. INFO = 3
  236. ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
  237. INFO = 4
  238. ELSE IF (M.LT.0) THEN
  239. INFO = 5
  240. ELSE IF (N.LT.0) THEN
  241. INFO = 6
  242. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  243. INFO = 9
  244. ELSE IF (LDB.LT.MAX(1,M)) THEN
  245. INFO = 11
  246. END IF
  247. IF (INFO.NE.0) THEN
  248. CALL XERBLA('DTRMM ',INFO)
  249. RETURN
  250. END IF
  251. *
  252. * Quick return if possible.
  253. *
  254. IF (M.EQ.0 .OR. N.EQ.0) RETURN
  255. *
  256. * And when alpha.eq.zero.
  257. *
  258. IF (ALPHA.EQ.ZERO) THEN
  259. DO 20 J = 1,N
  260. DO 10 I = 1,M
  261. B(I,J) = ZERO
  262. 10 CONTINUE
  263. 20 CONTINUE
  264. RETURN
  265. END IF
  266. *
  267. * Start the operations.
  268. *
  269. IF (LSIDE) THEN
  270. IF (LSAME(TRANSA,'N')) THEN
  271. *
  272. * Form B := alpha*A*B.
  273. *
  274. IF (UPPER) THEN
  275. DO 50 J = 1,N
  276. DO 40 K = 1,M
  277. IF (B(K,J).NE.ZERO) THEN
  278. TEMP = ALPHA*B(K,J)
  279. DO 30 I = 1,K - 1
  280. B(I,J) = B(I,J) + TEMP*A(I,K)
  281. 30 CONTINUE
  282. IF (NOUNIT) TEMP = TEMP*A(K,K)
  283. B(K,J) = TEMP
  284. END IF
  285. 40 CONTINUE
  286. 50 CONTINUE
  287. ELSE
  288. DO 80 J = 1,N
  289. DO 70 K = M,1,-1
  290. IF (B(K,J).NE.ZERO) THEN
  291. TEMP = ALPHA*B(K,J)
  292. B(K,J) = TEMP
  293. IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
  294. DO 60 I = K + 1,M
  295. B(I,J) = B(I,J) + TEMP*A(I,K)
  296. 60 CONTINUE
  297. END IF
  298. 70 CONTINUE
  299. 80 CONTINUE
  300. END IF
  301. ELSE
  302. *
  303. * Form B := alpha*A**T*B.
  304. *
  305. IF (UPPER) THEN
  306. DO 110 J = 1,N
  307. DO 100 I = M,1,-1
  308. TEMP = B(I,J)
  309. IF (NOUNIT) TEMP = TEMP*A(I,I)
  310. DO 90 K = 1,I - 1
  311. TEMP = TEMP + A(K,I)*B(K,J)
  312. 90 CONTINUE
  313. B(I,J) = ALPHA*TEMP
  314. 100 CONTINUE
  315. 110 CONTINUE
  316. ELSE
  317. DO 140 J = 1,N
  318. DO 130 I = 1,M
  319. TEMP = B(I,J)
  320. IF (NOUNIT) TEMP = TEMP*A(I,I)
  321. DO 120 K = I + 1,M
  322. TEMP = TEMP + A(K,I)*B(K,J)
  323. 120 CONTINUE
  324. B(I,J) = ALPHA*TEMP
  325. 130 CONTINUE
  326. 140 CONTINUE
  327. END IF
  328. END IF
  329. ELSE
  330. IF (LSAME(TRANSA,'N')) THEN
  331. *
  332. * Form B := alpha*B*A.
  333. *
  334. IF (UPPER) THEN
  335. DO 180 J = N,1,-1
  336. TEMP = ALPHA
  337. IF (NOUNIT) TEMP = TEMP*A(J,J)
  338. DO 150 I = 1,M
  339. B(I,J) = TEMP*B(I,J)
  340. 150 CONTINUE
  341. DO 170 K = 1,J - 1
  342. IF (A(K,J).NE.ZERO) THEN
  343. TEMP = ALPHA*A(K,J)
  344. DO 160 I = 1,M
  345. B(I,J) = B(I,J) + TEMP*B(I,K)
  346. 160 CONTINUE
  347. END IF
  348. 170 CONTINUE
  349. 180 CONTINUE
  350. ELSE
  351. DO 220 J = 1,N
  352. TEMP = ALPHA
  353. IF (NOUNIT) TEMP = TEMP*A(J,J)
  354. DO 190 I = 1,M
  355. B(I,J) = TEMP*B(I,J)
  356. 190 CONTINUE
  357. DO 210 K = J + 1,N
  358. IF (A(K,J).NE.ZERO) THEN
  359. TEMP = ALPHA*A(K,J)
  360. DO 200 I = 1,M
  361. B(I,J) = B(I,J) + TEMP*B(I,K)
  362. 200 CONTINUE
  363. END IF
  364. 210 CONTINUE
  365. 220 CONTINUE
  366. END IF
  367. ELSE
  368. *
  369. * Form B := alpha*B*A**T.
  370. *
  371. IF (UPPER) THEN
  372. DO 260 K = 1,N
  373. DO 240 J = 1,K - 1
  374. IF (A(J,K).NE.ZERO) THEN
  375. TEMP = ALPHA*A(J,K)
  376. DO 230 I = 1,M
  377. B(I,J) = B(I,J) + TEMP*B(I,K)
  378. 230 CONTINUE
  379. END IF
  380. 240 CONTINUE
  381. TEMP = ALPHA
  382. IF (NOUNIT) TEMP = TEMP*A(K,K)
  383. IF (TEMP.NE.ONE) THEN
  384. DO 250 I = 1,M
  385. B(I,K) = TEMP*B(I,K)
  386. 250 CONTINUE
  387. END IF
  388. 260 CONTINUE
  389. ELSE
  390. DO 300 K = N,1,-1
  391. DO 280 J = K + 1,N
  392. IF (A(J,K).NE.ZERO) THEN
  393. TEMP = ALPHA*A(J,K)
  394. DO 270 I = 1,M
  395. B(I,J) = B(I,J) + TEMP*B(I,K)
  396. 270 CONTINUE
  397. END IF
  398. 280 CONTINUE
  399. TEMP = ALPHA
  400. IF (NOUNIT) TEMP = TEMP*A(K,K)
  401. IF (TEMP.NE.ONE) THEN
  402. DO 290 I = 1,M
  403. B(I,K) = TEMP*B(I,K)
  404. 290 CONTINUE
  405. END IF
  406. 300 CONTINUE
  407. END IF
  408. END IF
  409. END IF
  410. *
  411. RETURN
  412. *
  413. * End of DTRMM .
  414. *
  415. END