You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtbmv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. *> \brief \b DTBMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,K,LDA,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION A(LDA,*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> DTBMV performs one of the matrix-vector operations
  28. *>
  29. *> x := A*x, or x := A**T*x,
  30. *>
  31. *> where x is an n element vector and A is an n by n unit, or non-unit,
  32. *> upper or lower triangular band matrix, with ( k + 1 ) diagonals.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> On entry, UPLO specifies whether the matrix is an upper or
  42. *> lower triangular matrix as follows:
  43. *>
  44. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  45. *>
  46. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> On entry, TRANS specifies the operation to be performed as
  53. *> follows:
  54. *>
  55. *> TRANS = 'N' or 'n' x := A*x.
  56. *>
  57. *> TRANS = 'T' or 't' x := A**T*x.
  58. *>
  59. *> TRANS = 'C' or 'c' x := A**T*x.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] DIAG
  63. *> \verbatim
  64. *> DIAG is CHARACTER*1
  65. *> On entry, DIAG specifies whether or not A is unit
  66. *> triangular as follows:
  67. *>
  68. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  69. *>
  70. *> DIAG = 'N' or 'n' A is not assumed to be unit
  71. *> triangular.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> On entry, N specifies the order of the matrix A.
  78. *> N must be at least zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] K
  82. *> \verbatim
  83. *> K is INTEGER
  84. *> On entry with UPLO = 'U' or 'u', K specifies the number of
  85. *> super-diagonals of the matrix A.
  86. *> On entry with UPLO = 'L' or 'l', K specifies the number of
  87. *> sub-diagonals of the matrix A.
  88. *> K must satisfy 0 .le. K.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is DOUBLE PRECISION array, dimension ( LDA, N )
  94. *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  95. *> by n part of the array A must contain the upper triangular
  96. *> band part of the matrix of coefficients, supplied column by
  97. *> column, with the leading diagonal of the matrix in row
  98. *> ( k + 1 ) of the array, the first super-diagonal starting at
  99. *> position 2 in row k, and so on. The top left k by k triangle
  100. *> of the array A is not referenced.
  101. *> The following program segment will transfer an upper
  102. *> triangular band matrix from conventional full matrix storage
  103. *> to band storage:
  104. *>
  105. *> DO 20, J = 1, N
  106. *> M = K + 1 - J
  107. *> DO 10, I = MAX( 1, J - K ), J
  108. *> A( M + I, J ) = matrix( I, J )
  109. *> 10 CONTINUE
  110. *> 20 CONTINUE
  111. *>
  112. *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  113. *> by n part of the array A must contain the lower triangular
  114. *> band part of the matrix of coefficients, supplied column by
  115. *> column, with the leading diagonal of the matrix in row 1 of
  116. *> the array, the first sub-diagonal starting at position 1 in
  117. *> row 2, and so on. The bottom right k by k triangle of the
  118. *> array A is not referenced.
  119. *> The following program segment will transfer a lower
  120. *> triangular band matrix from conventional full matrix storage
  121. *> to band storage:
  122. *>
  123. *> DO 20, J = 1, N
  124. *> M = 1 - J
  125. *> DO 10, I = J, MIN( N, J + K )
  126. *> A( M + I, J ) = matrix( I, J )
  127. *> 10 CONTINUE
  128. *> 20 CONTINUE
  129. *>
  130. *> Note that when DIAG = 'U' or 'u' the elements of the array A
  131. *> corresponding to the diagonal elements of the matrix are not
  132. *> referenced, but are assumed to be unity.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDA
  136. *> \verbatim
  137. *> LDA is INTEGER
  138. *> On entry, LDA specifies the first dimension of A as declared
  139. *> in the calling (sub) program. LDA must be at least
  140. *> ( k + 1 ).
  141. *> \endverbatim
  142. *>
  143. *> \param[in,out] X
  144. *> \verbatim
  145. *> X is DOUBLE PRECISION array, dimension at least
  146. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  147. *> Before entry, the incremented array X must contain the n
  148. *> element vector x. On exit, X is overwritten with the
  149. *> transformed vector x.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] INCX
  153. *> \verbatim
  154. *> INCX is INTEGER
  155. *> On entry, INCX specifies the increment for the elements of
  156. *> X. INCX must not be zero.
  157. *> \endverbatim
  158. *
  159. * Authors:
  160. * ========
  161. *
  162. *> \author Univ. of Tennessee
  163. *> \author Univ. of California Berkeley
  164. *> \author Univ. of Colorado Denver
  165. *> \author NAG Ltd.
  166. *
  167. *> \date December 2016
  168. *
  169. *> \ingroup double_blas_level2
  170. *
  171. *> \par Further Details:
  172. * =====================
  173. *>
  174. *> \verbatim
  175. *>
  176. *> Level 2 Blas routine.
  177. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  178. *>
  179. *> -- Written on 22-October-1986.
  180. *> Jack Dongarra, Argonne National Lab.
  181. *> Jeremy Du Croz, Nag Central Office.
  182. *> Sven Hammarling, Nag Central Office.
  183. *> Richard Hanson, Sandia National Labs.
  184. *> \endverbatim
  185. *>
  186. * =====================================================================
  187. SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  188. *
  189. * -- Reference BLAS level2 routine (version 3.7.0) --
  190. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  191. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192. * December 2016
  193. *
  194. * .. Scalar Arguments ..
  195. INTEGER INCX,K,LDA,N
  196. CHARACTER DIAG,TRANS,UPLO
  197. * ..
  198. * .. Array Arguments ..
  199. DOUBLE PRECISION A(LDA,*),X(*)
  200. * ..
  201. *
  202. * =====================================================================
  203. *
  204. * .. Parameters ..
  205. DOUBLE PRECISION ZERO
  206. PARAMETER (ZERO=0.0D+0)
  207. * ..
  208. * .. Local Scalars ..
  209. DOUBLE PRECISION TEMP
  210. INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  211. LOGICAL NOUNIT
  212. * ..
  213. * .. External Functions ..
  214. LOGICAL LSAME
  215. EXTERNAL LSAME
  216. * ..
  217. * .. External Subroutines ..
  218. EXTERNAL XERBLA
  219. * ..
  220. * .. Intrinsic Functions ..
  221. INTRINSIC MAX,MIN
  222. * ..
  223. *
  224. * Test the input parameters.
  225. *
  226. INFO = 0
  227. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  228. INFO = 1
  229. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  230. + .NOT.LSAME(TRANS,'C')) THEN
  231. INFO = 2
  232. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  233. INFO = 3
  234. ELSE IF (N.LT.0) THEN
  235. INFO = 4
  236. ELSE IF (K.LT.0) THEN
  237. INFO = 5
  238. ELSE IF (LDA.LT. (K+1)) THEN
  239. INFO = 7
  240. ELSE IF (INCX.EQ.0) THEN
  241. INFO = 9
  242. END IF
  243. IF (INFO.NE.0) THEN
  244. CALL XERBLA('DTBMV ',INFO)
  245. RETURN
  246. END IF
  247. *
  248. * Quick return if possible.
  249. *
  250. IF (N.EQ.0) RETURN
  251. *
  252. NOUNIT = LSAME(DIAG,'N')
  253. *
  254. * Set up the start point in X if the increment is not unity. This
  255. * will be ( N - 1 )*INCX too small for descending loops.
  256. *
  257. IF (INCX.LE.0) THEN
  258. KX = 1 - (N-1)*INCX
  259. ELSE IF (INCX.NE.1) THEN
  260. KX = 1
  261. END IF
  262. *
  263. * Start the operations. In this version the elements of A are
  264. * accessed sequentially with one pass through A.
  265. *
  266. IF (LSAME(TRANS,'N')) THEN
  267. *
  268. * Form x := A*x.
  269. *
  270. IF (LSAME(UPLO,'U')) THEN
  271. KPLUS1 = K + 1
  272. IF (INCX.EQ.1) THEN
  273. DO 20 J = 1,N
  274. IF (X(J).NE.ZERO) THEN
  275. TEMP = X(J)
  276. L = KPLUS1 - J
  277. DO 10 I = MAX(1,J-K),J - 1
  278. X(I) = X(I) + TEMP*A(L+I,J)
  279. 10 CONTINUE
  280. IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
  281. END IF
  282. 20 CONTINUE
  283. ELSE
  284. JX = KX
  285. DO 40 J = 1,N
  286. IF (X(JX).NE.ZERO) THEN
  287. TEMP = X(JX)
  288. IX = KX
  289. L = KPLUS1 - J
  290. DO 30 I = MAX(1,J-K),J - 1
  291. X(IX) = X(IX) + TEMP*A(L+I,J)
  292. IX = IX + INCX
  293. 30 CONTINUE
  294. IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
  295. END IF
  296. JX = JX + INCX
  297. IF (J.GT.K) KX = KX + INCX
  298. 40 CONTINUE
  299. END IF
  300. ELSE
  301. IF (INCX.EQ.1) THEN
  302. DO 60 J = N,1,-1
  303. IF (X(J).NE.ZERO) THEN
  304. TEMP = X(J)
  305. L = 1 - J
  306. DO 50 I = MIN(N,J+K),J + 1,-1
  307. X(I) = X(I) + TEMP*A(L+I,J)
  308. 50 CONTINUE
  309. IF (NOUNIT) X(J) = X(J)*A(1,J)
  310. END IF
  311. 60 CONTINUE
  312. ELSE
  313. KX = KX + (N-1)*INCX
  314. JX = KX
  315. DO 80 J = N,1,-1
  316. IF (X(JX).NE.ZERO) THEN
  317. TEMP = X(JX)
  318. IX = KX
  319. L = 1 - J
  320. DO 70 I = MIN(N,J+K),J + 1,-1
  321. X(IX) = X(IX) + TEMP*A(L+I,J)
  322. IX = IX - INCX
  323. 70 CONTINUE
  324. IF (NOUNIT) X(JX) = X(JX)*A(1,J)
  325. END IF
  326. JX = JX - INCX
  327. IF ((N-J).GE.K) KX = KX - INCX
  328. 80 CONTINUE
  329. END IF
  330. END IF
  331. ELSE
  332. *
  333. * Form x := A**T*x.
  334. *
  335. IF (LSAME(UPLO,'U')) THEN
  336. KPLUS1 = K + 1
  337. IF (INCX.EQ.1) THEN
  338. DO 100 J = N,1,-1
  339. TEMP = X(J)
  340. L = KPLUS1 - J
  341. IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  342. DO 90 I = J - 1,MAX(1,J-K),-1
  343. TEMP = TEMP + A(L+I,J)*X(I)
  344. 90 CONTINUE
  345. X(J) = TEMP
  346. 100 CONTINUE
  347. ELSE
  348. KX = KX + (N-1)*INCX
  349. JX = KX
  350. DO 120 J = N,1,-1
  351. TEMP = X(JX)
  352. KX = KX - INCX
  353. IX = KX
  354. L = KPLUS1 - J
  355. IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  356. DO 110 I = J - 1,MAX(1,J-K),-1
  357. TEMP = TEMP + A(L+I,J)*X(IX)
  358. IX = IX - INCX
  359. 110 CONTINUE
  360. X(JX) = TEMP
  361. JX = JX - INCX
  362. 120 CONTINUE
  363. END IF
  364. ELSE
  365. IF (INCX.EQ.1) THEN
  366. DO 140 J = 1,N
  367. TEMP = X(J)
  368. L = 1 - J
  369. IF (NOUNIT) TEMP = TEMP*A(1,J)
  370. DO 130 I = J + 1,MIN(N,J+K)
  371. TEMP = TEMP + A(L+I,J)*X(I)
  372. 130 CONTINUE
  373. X(J) = TEMP
  374. 140 CONTINUE
  375. ELSE
  376. JX = KX
  377. DO 160 J = 1,N
  378. TEMP = X(JX)
  379. KX = KX + INCX
  380. IX = KX
  381. L = 1 - J
  382. IF (NOUNIT) TEMP = TEMP*A(1,J)
  383. DO 150 I = J + 1,MIN(N,J+K)
  384. TEMP = TEMP + A(L+I,J)*X(IX)
  385. IX = IX + INCX
  386. 150 CONTINUE
  387. X(JX) = TEMP
  388. JX = JX + INCX
  389. 160 CONTINUE
  390. END IF
  391. END IF
  392. END IF
  393. *
  394. RETURN
  395. *
  396. * End of DTBMV .
  397. *
  398. END