You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgbmv.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. *> \brief \b DGBMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION ALPHA,BETA
  15. * INTEGER INCX,INCY,KL,KU,LDA,M,N
  16. * CHARACTER TRANS
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DGBMV performs one of the matrix-vector operations
  29. *>
  30. *> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
  31. *>
  32. *> where alpha and beta are scalars, x and y are vectors and A is an
  33. *> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] TRANS
  40. *> \verbatim
  41. *> TRANS is CHARACTER*1
  42. *> On entry, TRANS specifies the operation to be performed as
  43. *> follows:
  44. *>
  45. *> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  46. *>
  47. *> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
  48. *>
  49. *> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> On entry, M specifies the number of rows of the matrix A.
  56. *> M must be at least zero.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> On entry, N specifies the number of columns of the matrix A.
  63. *> N must be at least zero.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] KL
  67. *> \verbatim
  68. *> KL is INTEGER
  69. *> On entry, KL specifies the number of sub-diagonals of the
  70. *> matrix A. KL must satisfy 0 .le. KL.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] KU
  74. *> \verbatim
  75. *> KU is INTEGER
  76. *> On entry, KU specifies the number of super-diagonals of the
  77. *> matrix A. KU must satisfy 0 .le. KU.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] ALPHA
  81. *> \verbatim
  82. *> ALPHA is DOUBLE PRECISION.
  83. *> On entry, ALPHA specifies the scalar alpha.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] A
  87. *> \verbatim
  88. *> A is DOUBLE PRECISION array, dimension ( LDA, N )
  89. *> Before entry, the leading ( kl + ku + 1 ) by n part of the
  90. *> array A must contain the matrix of coefficients, supplied
  91. *> column by column, with the leading diagonal of the matrix in
  92. *> row ( ku + 1 ) of the array, the first super-diagonal
  93. *> starting at position 2 in row ku, the first sub-diagonal
  94. *> starting at position 1 in row ( ku + 2 ), and so on.
  95. *> Elements in the array A that do not correspond to elements
  96. *> in the band matrix (such as the top left ku by ku triangle)
  97. *> are not referenced.
  98. *> The following program segment will transfer a band matrix
  99. *> from conventional full matrix storage to band storage:
  100. *>
  101. *> DO 20, J = 1, N
  102. *> K = KU + 1 - J
  103. *> DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
  104. *> A( K + I, J ) = matrix( I, J )
  105. *> 10 CONTINUE
  106. *> 20 CONTINUE
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDA
  110. *> \verbatim
  111. *> LDA is INTEGER
  112. *> On entry, LDA specifies the first dimension of A as declared
  113. *> in the calling (sub) program. LDA must be at least
  114. *> ( kl + ku + 1 ).
  115. *> \endverbatim
  116. *>
  117. *> \param[in] X
  118. *> \verbatim
  119. *> X is DOUBLE PRECISION array, dimension at least
  120. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  121. *> and at least
  122. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  123. *> Before entry, the incremented array X must contain the
  124. *> vector x.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] INCX
  128. *> \verbatim
  129. *> INCX is INTEGER
  130. *> On entry, INCX specifies the increment for the elements of
  131. *> X. INCX must not be zero.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] BETA
  135. *> \verbatim
  136. *> BETA is DOUBLE PRECISION.
  137. *> On entry, BETA specifies the scalar beta. When BETA is
  138. *> supplied as zero then Y need not be set on input.
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] Y
  142. *> \verbatim
  143. *> Y is DOUBLE PRECISION array, dimension at least
  144. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  145. *> and at least
  146. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  147. *> Before entry, the incremented array Y must contain the
  148. *> vector y. On exit, Y is overwritten by the updated vector y.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] INCY
  152. *> \verbatim
  153. *> INCY is INTEGER
  154. *> On entry, INCY specifies the increment for the elements of
  155. *> Y. INCY must not be zero.
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \date December 2016
  167. *
  168. *> \ingroup double_blas_level2
  169. *
  170. *> \par Further Details:
  171. * =====================
  172. *>
  173. *> \verbatim
  174. *>
  175. *> Level 2 Blas routine.
  176. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  177. *>
  178. *> -- Written on 22-October-1986.
  179. *> Jack Dongarra, Argonne National Lab.
  180. *> Jeremy Du Croz, Nag Central Office.
  181. *> Sven Hammarling, Nag Central Office.
  182. *> Richard Hanson, Sandia National Labs.
  183. *> \endverbatim
  184. *>
  185. * =====================================================================
  186. SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  187. *
  188. * -- Reference BLAS level2 routine (version 3.7.0) --
  189. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  190. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191. * December 2016
  192. *
  193. * .. Scalar Arguments ..
  194. DOUBLE PRECISION ALPHA,BETA
  195. INTEGER INCX,INCY,KL,KU,LDA,M,N
  196. CHARACTER TRANS
  197. * ..
  198. * .. Array Arguments ..
  199. DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  200. * ..
  201. *
  202. * =====================================================================
  203. *
  204. * .. Parameters ..
  205. DOUBLE PRECISION ONE,ZERO
  206. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  207. * ..
  208. * .. Local Scalars ..
  209. DOUBLE PRECISION TEMP
  210. INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
  211. * ..
  212. * .. External Functions ..
  213. LOGICAL LSAME
  214. EXTERNAL LSAME
  215. * ..
  216. * .. External Subroutines ..
  217. EXTERNAL XERBLA
  218. * ..
  219. * .. Intrinsic Functions ..
  220. INTRINSIC MAX,MIN
  221. * ..
  222. *
  223. * Test the input parameters.
  224. *
  225. INFO = 0
  226. IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  227. + .NOT.LSAME(TRANS,'C')) THEN
  228. INFO = 1
  229. ELSE IF (M.LT.0) THEN
  230. INFO = 2
  231. ELSE IF (N.LT.0) THEN
  232. INFO = 3
  233. ELSE IF (KL.LT.0) THEN
  234. INFO = 4
  235. ELSE IF (KU.LT.0) THEN
  236. INFO = 5
  237. ELSE IF (LDA.LT. (KL+KU+1)) THEN
  238. INFO = 8
  239. ELSE IF (INCX.EQ.0) THEN
  240. INFO = 10
  241. ELSE IF (INCY.EQ.0) THEN
  242. INFO = 13
  243. END IF
  244. IF (INFO.NE.0) THEN
  245. CALL XERBLA('DGBMV ',INFO)
  246. RETURN
  247. END IF
  248. *
  249. * Quick return if possible.
  250. *
  251. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  252. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  253. *
  254. * Set LENX and LENY, the lengths of the vectors x and y, and set
  255. * up the start points in X and Y.
  256. *
  257. IF (LSAME(TRANS,'N')) THEN
  258. LENX = N
  259. LENY = M
  260. ELSE
  261. LENX = M
  262. LENY = N
  263. END IF
  264. IF (INCX.GT.0) THEN
  265. KX = 1
  266. ELSE
  267. KX = 1 - (LENX-1)*INCX
  268. END IF
  269. IF (INCY.GT.0) THEN
  270. KY = 1
  271. ELSE
  272. KY = 1 - (LENY-1)*INCY
  273. END IF
  274. *
  275. * Start the operations. In this version the elements of A are
  276. * accessed sequentially with one pass through the band part of A.
  277. *
  278. * First form y := beta*y.
  279. *
  280. IF (BETA.NE.ONE) THEN
  281. IF (INCY.EQ.1) THEN
  282. IF (BETA.EQ.ZERO) THEN
  283. DO 10 I = 1,LENY
  284. Y(I) = ZERO
  285. 10 CONTINUE
  286. ELSE
  287. DO 20 I = 1,LENY
  288. Y(I) = BETA*Y(I)
  289. 20 CONTINUE
  290. END IF
  291. ELSE
  292. IY = KY
  293. IF (BETA.EQ.ZERO) THEN
  294. DO 30 I = 1,LENY
  295. Y(IY) = ZERO
  296. IY = IY + INCY
  297. 30 CONTINUE
  298. ELSE
  299. DO 40 I = 1,LENY
  300. Y(IY) = BETA*Y(IY)
  301. IY = IY + INCY
  302. 40 CONTINUE
  303. END IF
  304. END IF
  305. END IF
  306. IF (ALPHA.EQ.ZERO) RETURN
  307. KUP1 = KU + 1
  308. IF (LSAME(TRANS,'N')) THEN
  309. *
  310. * Form y := alpha*A*x + y.
  311. *
  312. JX = KX
  313. IF (INCY.EQ.1) THEN
  314. DO 60 J = 1,N
  315. TEMP = ALPHA*X(JX)
  316. K = KUP1 - J
  317. DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
  318. Y(I) = Y(I) + TEMP*A(K+I,J)
  319. 50 CONTINUE
  320. JX = JX + INCX
  321. 60 CONTINUE
  322. ELSE
  323. DO 80 J = 1,N
  324. TEMP = ALPHA*X(JX)
  325. IY = KY
  326. K = KUP1 - J
  327. DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
  328. Y(IY) = Y(IY) + TEMP*A(K+I,J)
  329. IY = IY + INCY
  330. 70 CONTINUE
  331. JX = JX + INCX
  332. IF (J.GT.KU) KY = KY + INCY
  333. 80 CONTINUE
  334. END IF
  335. ELSE
  336. *
  337. * Form y := alpha*A**T*x + y.
  338. *
  339. JY = KY
  340. IF (INCX.EQ.1) THEN
  341. DO 100 J = 1,N
  342. TEMP = ZERO
  343. K = KUP1 - J
  344. DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
  345. TEMP = TEMP + A(K+I,J)*X(I)
  346. 90 CONTINUE
  347. Y(JY) = Y(JY) + ALPHA*TEMP
  348. JY = JY + INCY
  349. 100 CONTINUE
  350. ELSE
  351. DO 120 J = 1,N
  352. TEMP = ZERO
  353. IX = KX
  354. K = KUP1 - J
  355. DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
  356. TEMP = TEMP + A(K+I,J)*X(IX)
  357. IX = IX + INCX
  358. 110 CONTINUE
  359. Y(JY) = Y(JY) + ALPHA*TEMP
  360. JY = JY + INCY
  361. IF (J.GT.KU) KX = KX + INCX
  362. 120 CONTINUE
  363. END IF
  364. END IF
  365. *
  366. RETURN
  367. *
  368. * End of DGBMV .
  369. *
  370. END