|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- *> \brief \b CTRSV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
- *
- * .. Scalar Arguments ..
- * INTEGER INCX,LDA,N
- * CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX A(LDA,*),X(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTRSV solves one of the systems of equations
- *>
- *> A*x = b, or A**T*x = b, or A**H*x = b,
- *>
- *> where b and x are n element vectors and A is an n by n unit, or
- *> non-unit, upper or lower triangular matrix.
- *>
- *> No test for singularity or near-singularity is included in this
- *> routine. Such tests must be performed before calling this routine.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the matrix is an upper or
- *> lower triangular matrix as follows:
- *>
- *> UPLO = 'U' or 'u' A is an upper triangular matrix.
- *>
- *> UPLO = 'L' or 'l' A is a lower triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> On entry, TRANS specifies the equations to be solved as
- *> follows:
- *>
- *> TRANS = 'N' or 'n' A*x = b.
- *>
- *> TRANS = 'T' or 't' A**T*x = b.
- *>
- *> TRANS = 'C' or 'c' A**H*x = b.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> On entry, DIAG specifies whether or not A is unit
- *> triangular as follows:
- *>
- *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *>
- *> DIAG = 'N' or 'n' A is not assumed to be unit
- *> triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension ( LDA, N )
- *> Before entry with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array A must contain the upper
- *> triangular matrix and the strictly lower triangular part of
- *> A is not referenced.
- *> Before entry with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array A must contain the lower
- *> triangular matrix and the strictly upper triangular part of
- *> A is not referenced.
- *> Note that when DIAG = 'U' or 'u', the diagonal elements of
- *> A are not referenced either, but are assumed to be unity.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, n ).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the n
- *> element right-hand side vector b. On exit, X is overwritten
- *> with the solution vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_blas_level2
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
- *
- * -- Reference BLAS level2 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INCX,LDA,N
- CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX A(LDA,*),X(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KX
- LOGICAL NOCONJ,NOUNIT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (LDA.LT.MAX(1,N)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CTRSV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF (N.EQ.0) RETURN
- *
- NOCONJ = LSAME(TRANS,'T')
- NOUNIT = LSAME(DIAG,'N')
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through A.
- *
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form x := inv( A )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/A(J,J)
- TEMP = X(J)
- DO 10 I = J - 1,1,-1
- X(I) = X(I) - TEMP*A(I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- JX = KX + (N-1)*INCX
- DO 40 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/A(J,J)
- TEMP = X(JX)
- IX = JX
- DO 30 I = J - 1,1,-1
- IX = IX - INCX
- X(IX) = X(IX) - TEMP*A(I,J)
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/A(J,J)
- TEMP = X(J)
- DO 50 I = J + 1,N
- X(I) = X(I) - TEMP*A(I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/A(J,J)
- TEMP = X(JX)
- IX = JX
- DO 70 I = J + 1,N
- IX = IX + INCX
- X(IX) = X(IX) - TEMP*A(I,J)
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := inv( A**T )*x or x := inv( A**H )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = X(J)
- IF (NOCONJ) THEN
- DO 90 I = 1,J - 1
- TEMP = TEMP - A(I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- ELSE
- DO 100 I = 1,J - 1
- TEMP = TEMP - CONJG(A(I,J))*X(I)
- 100 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
- END IF
- X(J) = TEMP
- 110 CONTINUE
- ELSE
- JX = KX
- DO 140 J = 1,N
- IX = KX
- TEMP = X(JX)
- IF (NOCONJ) THEN
- DO 120 I = 1,J - 1
- TEMP = TEMP - A(I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- ELSE
- DO 130 I = 1,J - 1
- TEMP = TEMP - CONJG(A(I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
- END IF
- X(JX) = TEMP
- JX = JX + INCX
- 140 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 170 J = N,1,-1
- TEMP = X(J)
- IF (NOCONJ) THEN
- DO 150 I = N,J + 1,-1
- TEMP = TEMP - A(I,J)*X(I)
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- ELSE
- DO 160 I = N,J + 1,-1
- TEMP = TEMP - CONJG(A(I,J))*X(I)
- 160 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
- END IF
- X(J) = TEMP
- 170 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 200 J = N,1,-1
- IX = KX
- TEMP = X(JX)
- IF (NOCONJ) THEN
- DO 180 I = N,J + 1,-1
- TEMP = TEMP - A(I,J)*X(IX)
- IX = IX - INCX
- 180 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- ELSE
- DO 190 I = N,J + 1,-1
- TEMP = TEMP - CONJG(A(I,J))*X(IX)
- IX = IX - INCX
- 190 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
- END IF
- X(JX) = TEMP
- JX = JX - INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of CTRSV .
- *
- END
|