You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cher2.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. *> \brief \b CHER2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX ALPHA
  15. * INTEGER INCX,INCY,LDA,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CHER2 performs the hermitian rank 2 operation
  29. *>
  30. *> A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
  31. *>
  32. *> where alpha is a scalar, x and y are n element vectors and A is an n
  33. *> by n hermitian matrix.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the array A is to be referenced as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' Only the upper triangular part of A
  47. *> is to be referenced.
  48. *>
  49. *> UPLO = 'L' or 'l' Only the lower triangular part of A
  50. *> is to be referenced.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ALPHA
  61. *> \verbatim
  62. *> ALPHA is COMPLEX
  63. *> On entry, ALPHA specifies the scalar alpha.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] X
  67. *> \verbatim
  68. *> X is COMPLEX array, dimension at least
  69. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  70. *> Before entry, the incremented array X must contain the n
  71. *> element vector x.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] INCX
  75. *> \verbatim
  76. *> INCX is INTEGER
  77. *> On entry, INCX specifies the increment for the elements of
  78. *> X. INCX must not be zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] Y
  82. *> \verbatim
  83. *> Y is COMPLEX array, dimension at least
  84. *> ( 1 + ( n - 1 )*abs( INCY ) ).
  85. *> Before entry, the incremented array Y must contain the n
  86. *> element vector y.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] INCY
  90. *> \verbatim
  91. *> INCY is INTEGER
  92. *> On entry, INCY specifies the increment for the elements of
  93. *> Y. INCY must not be zero.
  94. *> \endverbatim
  95. *>
  96. *> \param[in,out] A
  97. *> \verbatim
  98. *> A is COMPLEX array, dimension ( LDA, N )
  99. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  100. *> upper triangular part of the array A must contain the upper
  101. *> triangular part of the hermitian matrix and the strictly
  102. *> lower triangular part of A is not referenced. On exit, the
  103. *> upper triangular part of the array A is overwritten by the
  104. *> upper triangular part of the updated matrix.
  105. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  106. *> lower triangular part of the array A must contain the lower
  107. *> triangular part of the hermitian matrix and the strictly
  108. *> upper triangular part of A is not referenced. On exit, the
  109. *> lower triangular part of the array A is overwritten by the
  110. *> lower triangular part of the updated matrix.
  111. *> Note that the imaginary parts of the diagonal elements need
  112. *> not be set, they are assumed to be zero, and on exit they
  113. *> are set to zero.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDA
  117. *> \verbatim
  118. *> LDA is INTEGER
  119. *> On entry, LDA specifies the first dimension of A as declared
  120. *> in the calling (sub) program. LDA must be at least
  121. *> max( 1, n ).
  122. *> \endverbatim
  123. *
  124. * Authors:
  125. * ========
  126. *
  127. *> \author Univ. of Tennessee
  128. *> \author Univ. of California Berkeley
  129. *> \author Univ. of Colorado Denver
  130. *> \author NAG Ltd.
  131. *
  132. *> \date December 2016
  133. *
  134. *> \ingroup complex_blas_level2
  135. *
  136. *> \par Further Details:
  137. * =====================
  138. *>
  139. *> \verbatim
  140. *>
  141. *> Level 2 Blas routine.
  142. *>
  143. *> -- Written on 22-October-1986.
  144. *> Jack Dongarra, Argonne National Lab.
  145. *> Jeremy Du Croz, Nag Central Office.
  146. *> Sven Hammarling, Nag Central Office.
  147. *> Richard Hanson, Sandia National Labs.
  148. *> \endverbatim
  149. *>
  150. * =====================================================================
  151. SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  152. *
  153. * -- Reference BLAS level2 routine (version 3.7.0) --
  154. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. * December 2016
  157. *
  158. * .. Scalar Arguments ..
  159. COMPLEX ALPHA
  160. INTEGER INCX,INCY,LDA,N
  161. CHARACTER UPLO
  162. * ..
  163. * .. Array Arguments ..
  164. COMPLEX A(LDA,*),X(*),Y(*)
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Parameters ..
  170. COMPLEX ZERO
  171. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  172. * ..
  173. * .. Local Scalars ..
  174. COMPLEX TEMP1,TEMP2
  175. INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  176. * ..
  177. * .. External Functions ..
  178. LOGICAL LSAME
  179. EXTERNAL LSAME
  180. * ..
  181. * .. External Subroutines ..
  182. EXTERNAL XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC CONJG,MAX,REAL
  186. * ..
  187. *
  188. * Test the input parameters.
  189. *
  190. INFO = 0
  191. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  192. INFO = 1
  193. ELSE IF (N.LT.0) THEN
  194. INFO = 2
  195. ELSE IF (INCX.EQ.0) THEN
  196. INFO = 5
  197. ELSE IF (INCY.EQ.0) THEN
  198. INFO = 7
  199. ELSE IF (LDA.LT.MAX(1,N)) THEN
  200. INFO = 9
  201. END IF
  202. IF (INFO.NE.0) THEN
  203. CALL XERBLA('CHER2 ',INFO)
  204. RETURN
  205. END IF
  206. *
  207. * Quick return if possible.
  208. *
  209. IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  210. *
  211. * Set up the start points in X and Y if the increments are not both
  212. * unity.
  213. *
  214. IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  215. IF (INCX.GT.0) THEN
  216. KX = 1
  217. ELSE
  218. KX = 1 - (N-1)*INCX
  219. END IF
  220. IF (INCY.GT.0) THEN
  221. KY = 1
  222. ELSE
  223. KY = 1 - (N-1)*INCY
  224. END IF
  225. JX = KX
  226. JY = KY
  227. END IF
  228. *
  229. * Start the operations. In this version the elements of A are
  230. * accessed sequentially with one pass through the triangular part
  231. * of A.
  232. *
  233. IF (LSAME(UPLO,'U')) THEN
  234. *
  235. * Form A when A is stored in the upper triangle.
  236. *
  237. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  238. DO 20 J = 1,N
  239. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  240. TEMP1 = ALPHA*CONJG(Y(J))
  241. TEMP2 = CONJG(ALPHA*X(J))
  242. DO 10 I = 1,J - 1
  243. A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  244. 10 CONTINUE
  245. A(J,J) = REAL(A(J,J)) +
  246. + REAL(X(J)*TEMP1+Y(J)*TEMP2)
  247. ELSE
  248. A(J,J) = REAL(A(J,J))
  249. END IF
  250. 20 CONTINUE
  251. ELSE
  252. DO 40 J = 1,N
  253. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  254. TEMP1 = ALPHA*CONJG(Y(JY))
  255. TEMP2 = CONJG(ALPHA*X(JX))
  256. IX = KX
  257. IY = KY
  258. DO 30 I = 1,J - 1
  259. A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  260. IX = IX + INCX
  261. IY = IY + INCY
  262. 30 CONTINUE
  263. A(J,J) = REAL(A(J,J)) +
  264. + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
  265. ELSE
  266. A(J,J) = REAL(A(J,J))
  267. END IF
  268. JX = JX + INCX
  269. JY = JY + INCY
  270. 40 CONTINUE
  271. END IF
  272. ELSE
  273. *
  274. * Form A when A is stored in the lower triangle.
  275. *
  276. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  277. DO 60 J = 1,N
  278. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  279. TEMP1 = ALPHA*CONJG(Y(J))
  280. TEMP2 = CONJG(ALPHA*X(J))
  281. A(J,J) = REAL(A(J,J)) +
  282. + REAL(X(J)*TEMP1+Y(J)*TEMP2)
  283. DO 50 I = J + 1,N
  284. A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  285. 50 CONTINUE
  286. ELSE
  287. A(J,J) = REAL(A(J,J))
  288. END IF
  289. 60 CONTINUE
  290. ELSE
  291. DO 80 J = 1,N
  292. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  293. TEMP1 = ALPHA*CONJG(Y(JY))
  294. TEMP2 = CONJG(ALPHA*X(JX))
  295. A(J,J) = REAL(A(J,J)) +
  296. + REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
  297. IX = JX
  298. IY = JY
  299. DO 70 I = J + 1,N
  300. IX = IX + INCX
  301. IY = IY + INCY
  302. A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  303. 70 CONTINUE
  304. ELSE
  305. A(J,J) = REAL(A(J,J))
  306. END IF
  307. JX = JX + INCX
  308. JY = JY + INCY
  309. 80 CONTINUE
  310. END IF
  311. END IF
  312. *
  313. RETURN
  314. *
  315. * End of CHER2 .
  316. *
  317. END