|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593 |
- *> \brief \b DDRVGT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
- * B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NN, NOUT, NRHS
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * DOUBLE PRECISION A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
- * $ X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DDRVGT tests DGTSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX,2*NRHS))
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
- $ B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NN, NOUT, NRHS
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- DOUBLE PRECISION A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
- $ X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 12 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 6 )
- * ..
- * .. Local Scalars ..
- LOGICAL TRFCON, ZEROT
- CHARACTER DIST, FACT, TRANS, TYPE
- CHARACTER*3 PATH
- INTEGER I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
- $ K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
- $ NFAIL, NIMAT, NRUN, NT
- DOUBLE PRECISION AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
- $ RCONDC, RCONDI, RCONDO
- * ..
- * .. Local Arrays ..
- CHARACTER TRANSS( 3 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DASUM, DGET06, DLANGT
- EXTERNAL DASUM, DGET06, DLANGT
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
- $ DGTSV, DGTSVX, DGTT01, DGTT02, DGTT05, DGTTRF,
- $ DGTTRS, DLACPY, DLAGTM, DLARNV, DLASET, DLATB4,
- $ DLATMS, DSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
- $ 'C' /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Double precision'
- PATH( 2: 3 ) = 'GT'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL DERRVX( PATH, NOUT )
- INFOT = 0
- *
- DO 140 IN = 1, NN
- *
- * Do for each value of N in NVAL.
- *
- N = NVAL( IN )
- M = MAX( N-1, 0 )
- LDA = MAX( 1, N )
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 130 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 130
- *
- * Set up parameters with DLATB4.
- *
- CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ COND, DIST )
- *
- ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
- IF( IMAT.LE.6 ) THEN
- *
- * Types 1-6: generate matrices of known condition number.
- *
- KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
- SRNAMT = 'DLATMS'
- CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
- $ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
- $ INFO )
- *
- * Check the error code from DLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, KL,
- $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 130
- END IF
- IZERO = 0
- *
- IF( N.GT.1 ) THEN
- CALL DCOPY( N-1, AF( 4 ), 3, A, 1 )
- CALL DCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
- END IF
- CALL DCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
- ELSE
- *
- * Types 7-12: generate tridiagonal matrices with
- * unknown condition numbers.
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
- *
- * Generate a matrix with elements from [-1,1].
- *
- CALL DLARNV( 2, ISEED, N+2*M, A )
- IF( ANORM.NE.ONE )
- $ CALL DSCAL( N+2*M, ANORM, A, 1 )
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Reuse the last matrix by copying back the zeroed out
- * elements.
- *
- IF( IZERO.EQ.1 ) THEN
- A( N ) = Z( 2 )
- IF( N.GT.1 )
- $ A( 1 ) = Z( 3 )
- ELSE IF( IZERO.EQ.N ) THEN
- A( 3*N-2 ) = Z( 1 )
- A( 2*N-1 ) = Z( 2 )
- ELSE
- A( 2*N-2+IZERO ) = Z( 1 )
- A( N-1+IZERO ) = Z( 2 )
- A( IZERO ) = Z( 3 )
- END IF
- END IF
- *
- * If IMAT > 7, set one column of the matrix to 0.
- *
- IF( .NOT.ZEROT ) THEN
- IZERO = 0
- ELSE IF( IMAT.EQ.8 ) THEN
- IZERO = 1
- Z( 2 ) = A( N )
- A( N ) = ZERO
- IF( N.GT.1 ) THEN
- Z( 3 ) = A( 1 )
- A( 1 ) = ZERO
- END IF
- ELSE IF( IMAT.EQ.9 ) THEN
- IZERO = N
- Z( 1 ) = A( 3*N-2 )
- Z( 2 ) = A( 2*N-1 )
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- ELSE
- IZERO = ( N+1 ) / 2
- DO 20 I = IZERO, N - 1
- A( 2*N-2+I ) = ZERO
- A( N-1+I ) = ZERO
- A( I ) = ZERO
- 20 CONTINUE
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- END IF
- END IF
- *
- DO 120 IFACT = 1, 2
- IF( IFACT.EQ.1 ) THEN
- FACT = 'F'
- ELSE
- FACT = 'N'
- END IF
- *
- * Compute the condition number for comparison with
- * the value returned by DGTSVX.
- *
- IF( ZEROT ) THEN
- IF( IFACT.EQ.1 )
- $ GO TO 120
- RCONDO = ZERO
- RCONDI = ZERO
- *
- ELSE IF( IFACT.EQ.1 ) THEN
- CALL DCOPY( N+2*M, A, 1, AF, 1 )
- *
- * Compute the 1-norm and infinity-norm of A.
- *
- ANORMO = DLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
- ANORMI = DLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
- *
- * Factor the matrix A.
- *
- CALL DGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, INFO )
- *
- * Use DGTTRS to solve for one column at a time of
- * inv(A), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 40 I = 1, N
- DO 30 J = 1, N
- X( J ) = ZERO
- 30 CONTINUE
- X( I ) = ONE
- CALL DGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
- $ LDA, INFO )
- AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
- 40 CONTINUE
- *
- * Compute the 1-norm condition number of A.
- *
- IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDO = ONE
- ELSE
- RCONDO = ( ONE / ANORMO ) / AINVNM
- END IF
- *
- * Use DGTTRS to solve for one column at a time of
- * inv(A'), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 60 I = 1, N
- DO 50 J = 1, N
- X( J ) = ZERO
- 50 CONTINUE
- X( I ) = ONE
- CALL DGTTRS( 'Transpose', N, 1, AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
- $ LDA, INFO )
- AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
- 60 CONTINUE
- *
- * Compute the infinity-norm condition number of A.
- *
- IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDI = ONE
- ELSE
- RCONDI = ( ONE / ANORMI ) / AINVNM
- END IF
- END IF
- *
- DO 110 ITRAN = 1, 3
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- RCONDC = RCONDO
- ELSE
- RCONDC = RCONDI
- END IF
- *
- * Generate NRHS random solution vectors.
- *
- IX = 1
- DO 70 J = 1, NRHS
- CALL DLARNV( 2, ISEED, N, XACT( IX ) )
- IX = IX + LDA
- 70 CONTINUE
- *
- * Set the right hand side.
- *
- CALL DLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
- $ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
- *
- IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
- *
- * --- Test DGTSV ---
- *
- * Solve the system using Gaussian elimination with
- * partial pivoting.
- *
- CALL DCOPY( N+2*M, A, 1, AF, 1 )
- CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'DGTSV '
- CALL DGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
- $ LDA, INFO )
- *
- * Check error code from DGTSV .
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DGTSV ', INFO, IZERO, ' ',
- $ N, N, 1, 1, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- NT = 1
- IF( IZERO.EQ.0 ) THEN
- *
- * Check residual of computed solution.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL DGTT02( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- NT = 3
- END IF
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 80 K = 2, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'DGTSV ', N, IMAT,
- $ K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 80 CONTINUE
- NRUN = NRUN + NT - 1
- END IF
- *
- * --- Test DGTSVX ---
- *
- IF( IFACT.GT.1 ) THEN
- *
- * Initialize AF to zero.
- *
- DO 90 I = 1, 3*N - 2
- AF( I ) = ZERO
- 90 CONTINUE
- END IF
- CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
- *
- * Solve the system and compute the condition number and
- * error bounds using DGTSVX.
- *
- SRNAMT = 'DGTSVX'
- CALL DGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
- $ RCOND, RWORK, RWORK( NRHS+1 ), WORK,
- $ IWORK( N+1 ), INFO )
- *
- * Check the error code from DGTSVX.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DGTSVX', INFO, IZERO,
- $ FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
- $ NFAIL, NERRS, NOUT )
- *
- IF( IFACT.GE.2 ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL DGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
- $ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
- $ IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- TRFCON = .FALSE.
- *
- * Check residual of computed solution.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL DGTT02( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- * Check the error bounds from iterative refinement.
- *
- CALL DGTT05( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
- NT = 5
- END IF
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 100 K = K1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'DGTSVX', FACT, TRANS,
- $ N, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 100 CONTINUE
- *
- * Check the reciprocal of the condition number.
- *
- RESULT( 6 ) = DGET06( RCOND, RCONDC )
- IF( RESULT( 6 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'DGTSVX', FACT, TRANS, N,
- $ IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + NT - K1 + 2
- *
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
- $ ', ratio = ', G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
- $ I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
- RETURN
- *
- * End of DDRVGT
- *
- END
|