You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlangb.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. *> \brief \b ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANGB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM
  26. * INTEGER KL, KU, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANGB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANGB
  45. *> \verbatim
  46. *>
  47. *> ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANGB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrix A. N >= 0. When N = 0, ZLANGB is
  75. *> set to zero.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] KL
  79. *> \verbatim
  80. *> KL is INTEGER
  81. *> The number of sub-diagonals of the matrix A. KL >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] KU
  85. *> \verbatim
  86. *> KU is INTEGER
  87. *> The number of super-diagonals of the matrix A. KU >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] AB
  91. *> \verbatim
  92. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  93. *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
  94. *> column of A is stored in the j-th column of the array AB as
  95. *> follows:
  96. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDAB
  100. *> \verbatim
  101. *> LDAB is INTEGER
  102. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  109. *> referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date September 2012
  121. *
  122. *> \ingroup complex16GBauxiliary
  123. *
  124. * =====================================================================
  125. DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
  126. $ WORK )
  127. *
  128. * -- LAPACK auxiliary routine (version 3.4.2) --
  129. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  130. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131. * September 2012
  132. *
  133. * .. Scalar Arguments ..
  134. CHARACTER NORM
  135. INTEGER KL, KU, LDAB, N
  136. * ..
  137. * .. Array Arguments ..
  138. DOUBLE PRECISION WORK( * )
  139. COMPLEX*16 AB( LDAB, * )
  140. * ..
  141. *
  142. * =====================================================================
  143. *
  144. * .. Parameters ..
  145. DOUBLE PRECISION ONE, ZERO
  146. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  147. * ..
  148. * .. Local Scalars ..
  149. INTEGER I, J, K, L
  150. DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
  151. * ..
  152. * .. External Functions ..
  153. LOGICAL LSAME, DISNAN
  154. EXTERNAL LSAME, DISNAN
  155. * ..
  156. * .. External Subroutines ..
  157. EXTERNAL ZLASSQ
  158. * ..
  159. * .. Intrinsic Functions ..
  160. INTRINSIC ABS, MAX, MIN, SQRT
  161. * ..
  162. * .. Executable Statements ..
  163. *
  164. IF( N.EQ.0 ) THEN
  165. VALUE = ZERO
  166. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  167. *
  168. * Find max(abs(A(i,j))).
  169. *
  170. VALUE = ZERO
  171. DO 20 J = 1, N
  172. DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  173. TEMP = ABS( AB( I, J ) )
  174. IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
  175. 10 CONTINUE
  176. 20 CONTINUE
  177. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  178. *
  179. * Find norm1(A).
  180. *
  181. VALUE = ZERO
  182. DO 40 J = 1, N
  183. SUM = ZERO
  184. DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  185. SUM = SUM + ABS( AB( I, J ) )
  186. 30 CONTINUE
  187. IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  188. 40 CONTINUE
  189. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  190. *
  191. * Find normI(A).
  192. *
  193. DO 50 I = 1, N
  194. WORK( I ) = ZERO
  195. 50 CONTINUE
  196. DO 70 J = 1, N
  197. K = KU + 1 - J
  198. DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
  199. WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
  200. 60 CONTINUE
  201. 70 CONTINUE
  202. VALUE = ZERO
  203. DO 80 I = 1, N
  204. TEMP = WORK( I )
  205. IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
  206. 80 CONTINUE
  207. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  208. *
  209. * Find normF(A).
  210. *
  211. SCALE = ZERO
  212. SUM = ONE
  213. DO 90 J = 1, N
  214. L = MAX( 1, J-KU )
  215. K = KU + 1 - J + L
  216. CALL ZLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
  217. 90 CONTINUE
  218. VALUE = SCALE*SQRT( SUM )
  219. END IF
  220. *
  221. ZLANGB = VALUE
  222. RETURN
  223. *
  224. * End of ZLANGB
  225. *
  226. END