You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssbevx.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. *> \brief <b> SSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSBEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  22. * VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  23. * IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  28. * REAL ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * REAL AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  33. * $ Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> SSBEVX computes selected eigenvalues and, optionally, eigenvectors
  43. *> of a real symmetric band matrix A. Eigenvalues and eigenvectors can
  44. *> be selected by specifying either a range of values or a range of
  45. *> indices for the desired eigenvalues.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] JOBZ
  52. *> \verbatim
  53. *> JOBZ is CHARACTER*1
  54. *> = 'N': Compute eigenvalues only;
  55. *> = 'V': Compute eigenvalues and eigenvectors.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] RANGE
  59. *> \verbatim
  60. *> RANGE is CHARACTER*1
  61. *> = 'A': all eigenvalues will be found;
  62. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  63. *> will be found;
  64. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangle of A is stored;
  71. *> = 'L': Lower triangle of A is stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrix A. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KD
  81. *> \verbatim
  82. *> KD is INTEGER
  83. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AB
  88. *> \verbatim
  89. *> AB is REAL array, dimension (LDAB, N)
  90. *> On entry, the upper or lower triangle of the symmetric band
  91. *> matrix A, stored in the first KD+1 rows of the array. The
  92. *> j-th column of A is stored in the j-th column of the array AB
  93. *> as follows:
  94. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  95. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  96. *>
  97. *> On exit, AB is overwritten by values generated during the
  98. *> reduction to tridiagonal form. If UPLO = 'U', the first
  99. *> superdiagonal and the diagonal of the tridiagonal matrix T
  100. *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
  101. *> the diagonal and first subdiagonal of T are returned in the
  102. *> first two rows of AB.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDAB
  106. *> \verbatim
  107. *> LDAB is INTEGER
  108. *> The leading dimension of the array AB. LDAB >= KD + 1.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] Q
  112. *> \verbatim
  113. *> Q is REAL array, dimension (LDQ, N)
  114. *> If JOBZ = 'V', the N-by-N orthogonal matrix used in the
  115. *> reduction to tridiagonal form.
  116. *> If JOBZ = 'N', the array Q is not referenced.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDQ
  120. *> \verbatim
  121. *> LDQ is INTEGER
  122. *> The leading dimension of the array Q. If JOBZ = 'V', then
  123. *> LDQ >= max(1,N).
  124. *> \endverbatim
  125. *>
  126. *> \param[in] VL
  127. *> \verbatim
  128. *> VL is REAL
  129. *> \endverbatim
  130. *>
  131. *> \param[in] VU
  132. *> \verbatim
  133. *> VU is REAL
  134. *> If RANGE='V', the lower and upper bounds of the interval to
  135. *> be searched for eigenvalues. VL < VU.
  136. *> Not referenced if RANGE = 'A' or 'I'.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] IL
  140. *> \verbatim
  141. *> IL is INTEGER
  142. *> \endverbatim
  143. *>
  144. *> \param[in] IU
  145. *> \verbatim
  146. *> IU is INTEGER
  147. *> If RANGE='I', the indices (in ascending order) of the
  148. *> smallest and largest eigenvalues to be returned.
  149. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  150. *> Not referenced if RANGE = 'A' or 'V'.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] ABSTOL
  154. *> \verbatim
  155. *> ABSTOL is REAL
  156. *> The absolute error tolerance for the eigenvalues.
  157. *> An approximate eigenvalue is accepted as converged
  158. *> when it is determined to lie in an interval [a,b]
  159. *> of width less than or equal to
  160. *>
  161. *> ABSTOL + EPS * max( |a|,|b| ) ,
  162. *>
  163. *> where EPS is the machine precision. If ABSTOL is less than
  164. *> or equal to zero, then EPS*|T| will be used in its place,
  165. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  166. *> by reducing AB to tridiagonal form.
  167. *>
  168. *> Eigenvalues will be computed most accurately when ABSTOL is
  169. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  170. *> If this routine returns with INFO>0, indicating that some
  171. *> eigenvectors did not converge, try setting ABSTOL to
  172. *> 2*SLAMCH('S').
  173. *>
  174. *> See "Computing Small Singular Values of Bidiagonal Matrices
  175. *> with Guaranteed High Relative Accuracy," by Demmel and
  176. *> Kahan, LAPACK Working Note #3.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] M
  180. *> \verbatim
  181. *> M is INTEGER
  182. *> The total number of eigenvalues found. 0 <= M <= N.
  183. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] W
  187. *> \verbatim
  188. *> W is REAL array, dimension (N)
  189. *> The first M elements contain the selected eigenvalues in
  190. *> ascending order.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] Z
  194. *> \verbatim
  195. *> Z is REAL array, dimension (LDZ, max(1,M))
  196. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  197. *> contain the orthonormal eigenvectors of the matrix A
  198. *> corresponding to the selected eigenvalues, with the i-th
  199. *> column of Z holding the eigenvector associated with W(i).
  200. *> If an eigenvector fails to converge, then that column of Z
  201. *> contains the latest approximation to the eigenvector, and the
  202. *> index of the eigenvector is returned in IFAIL.
  203. *> If JOBZ = 'N', then Z is not referenced.
  204. *> Note: the user must ensure that at least max(1,M) columns are
  205. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  206. *> is not known in advance and an upper bound must be used.
  207. *> \endverbatim
  208. *>
  209. *> \param[in] LDZ
  210. *> \verbatim
  211. *> LDZ is INTEGER
  212. *> The leading dimension of the array Z. LDZ >= 1, and if
  213. *> JOBZ = 'V', LDZ >= max(1,N).
  214. *> \endverbatim
  215. *>
  216. *> \param[out] WORK
  217. *> \verbatim
  218. *> WORK is REAL array, dimension (7*N)
  219. *> \endverbatim
  220. *>
  221. *> \param[out] IWORK
  222. *> \verbatim
  223. *> IWORK is INTEGER array, dimension (5*N)
  224. *> \endverbatim
  225. *>
  226. *> \param[out] IFAIL
  227. *> \verbatim
  228. *> IFAIL is INTEGER array, dimension (N)
  229. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  230. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  231. *> indices of the eigenvectors that failed to converge.
  232. *> If JOBZ = 'N', then IFAIL is not referenced.
  233. *> \endverbatim
  234. *>
  235. *> \param[out] INFO
  236. *> \verbatim
  237. *> INFO is INTEGER
  238. *> = 0: successful exit.
  239. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  240. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  241. *> Their indices are stored in array IFAIL.
  242. *> \endverbatim
  243. *
  244. * Authors:
  245. * ========
  246. *
  247. *> \author Univ. of Tennessee
  248. *> \author Univ. of California Berkeley
  249. *> \author Univ. of Colorado Denver
  250. *> \author NAG Ltd.
  251. *
  252. *> \date November 2011
  253. *
  254. *> \ingroup realOTHEReigen
  255. *
  256. * =====================================================================
  257. SUBROUTINE SSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  258. $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  259. $ IFAIL, INFO )
  260. *
  261. * -- LAPACK driver routine (version 3.4.0) --
  262. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  263. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  264. * November 2011
  265. *
  266. * .. Scalar Arguments ..
  267. CHARACTER JOBZ, RANGE, UPLO
  268. INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  269. REAL ABSTOL, VL, VU
  270. * ..
  271. * .. Array Arguments ..
  272. INTEGER IFAIL( * ), IWORK( * )
  273. REAL AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  274. $ Z( LDZ, * )
  275. * ..
  276. *
  277. * =====================================================================
  278. *
  279. * .. Parameters ..
  280. REAL ZERO, ONE
  281. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  282. * ..
  283. * .. Local Scalars ..
  284. LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  285. CHARACTER ORDER
  286. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  287. $ INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
  288. $ NSPLIT
  289. REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  290. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  291. * ..
  292. * .. External Functions ..
  293. LOGICAL LSAME
  294. REAL SLAMCH, SLANSB
  295. EXTERNAL LSAME, SLAMCH, SLANSB
  296. * ..
  297. * .. External Subroutines ..
  298. EXTERNAL SCOPY, SGEMV, SLACPY, SLASCL, SSBTRD, SSCAL,
  299. $ SSTEBZ, SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
  300. * ..
  301. * .. Intrinsic Functions ..
  302. INTRINSIC MAX, MIN, SQRT
  303. * ..
  304. * .. Executable Statements ..
  305. *
  306. * Test the input parameters.
  307. *
  308. WANTZ = LSAME( JOBZ, 'V' )
  309. ALLEIG = LSAME( RANGE, 'A' )
  310. VALEIG = LSAME( RANGE, 'V' )
  311. INDEIG = LSAME( RANGE, 'I' )
  312. LOWER = LSAME( UPLO, 'L' )
  313. *
  314. INFO = 0
  315. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  316. INFO = -1
  317. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  318. INFO = -2
  319. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  320. INFO = -3
  321. ELSE IF( N.LT.0 ) THEN
  322. INFO = -4
  323. ELSE IF( KD.LT.0 ) THEN
  324. INFO = -5
  325. ELSE IF( LDAB.LT.KD+1 ) THEN
  326. INFO = -7
  327. ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  328. INFO = -9
  329. ELSE
  330. IF( VALEIG ) THEN
  331. IF( N.GT.0 .AND. VU.LE.VL )
  332. $ INFO = -11
  333. ELSE IF( INDEIG ) THEN
  334. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  335. INFO = -12
  336. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  337. INFO = -13
  338. END IF
  339. END IF
  340. END IF
  341. IF( INFO.EQ.0 ) THEN
  342. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  343. $ INFO = -18
  344. END IF
  345. *
  346. IF( INFO.NE.0 ) THEN
  347. CALL XERBLA( 'SSBEVX', -INFO )
  348. RETURN
  349. END IF
  350. *
  351. * Quick return if possible
  352. *
  353. M = 0
  354. IF( N.EQ.0 )
  355. $ RETURN
  356. *
  357. IF( N.EQ.1 ) THEN
  358. M = 1
  359. IF( LOWER ) THEN
  360. TMP1 = AB( 1, 1 )
  361. ELSE
  362. TMP1 = AB( KD+1, 1 )
  363. END IF
  364. IF( VALEIG ) THEN
  365. IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  366. $ M = 0
  367. END IF
  368. IF( M.EQ.1 ) THEN
  369. W( 1 ) = TMP1
  370. IF( WANTZ )
  371. $ Z( 1, 1 ) = ONE
  372. END IF
  373. RETURN
  374. END IF
  375. *
  376. * Get machine constants.
  377. *
  378. SAFMIN = SLAMCH( 'Safe minimum' )
  379. EPS = SLAMCH( 'Precision' )
  380. SMLNUM = SAFMIN / EPS
  381. BIGNUM = ONE / SMLNUM
  382. RMIN = SQRT( SMLNUM )
  383. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  384. *
  385. * Scale matrix to allowable range, if necessary.
  386. *
  387. ISCALE = 0
  388. ABSTLL = ABSTOL
  389. IF ( VALEIG ) THEN
  390. VLL = VL
  391. VUU = VU
  392. ELSE
  393. VLL = ZERO
  394. VUU = ZERO
  395. ENDIF
  396. ANRM = SLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
  397. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  398. ISCALE = 1
  399. SIGMA = RMIN / ANRM
  400. ELSE IF( ANRM.GT.RMAX ) THEN
  401. ISCALE = 1
  402. SIGMA = RMAX / ANRM
  403. END IF
  404. IF( ISCALE.EQ.1 ) THEN
  405. IF( LOWER ) THEN
  406. CALL SLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  407. ELSE
  408. CALL SLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  409. END IF
  410. IF( ABSTOL.GT.0 )
  411. $ ABSTLL = ABSTOL*SIGMA
  412. IF( VALEIG ) THEN
  413. VLL = VL*SIGMA
  414. VUU = VU*SIGMA
  415. END IF
  416. END IF
  417. *
  418. * Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
  419. *
  420. INDD = 1
  421. INDE = INDD + N
  422. INDWRK = INDE + N
  423. CALL SSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
  424. $ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  425. *
  426. * If all eigenvalues are desired and ABSTOL is less than or equal
  427. * to zero, then call SSTERF or SSTEQR. If this fails for some
  428. * eigenvalue, then try SSTEBZ.
  429. *
  430. TEST = .FALSE.
  431. IF (INDEIG) THEN
  432. IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  433. TEST = .TRUE.
  434. END IF
  435. END IF
  436. IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  437. CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
  438. INDEE = INDWRK + 2*N
  439. IF( .NOT.WANTZ ) THEN
  440. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  441. CALL SSTERF( N, W, WORK( INDEE ), INFO )
  442. ELSE
  443. CALL SLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  444. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  445. CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  446. $ WORK( INDWRK ), INFO )
  447. IF( INFO.EQ.0 ) THEN
  448. DO 10 I = 1, N
  449. IFAIL( I ) = 0
  450. 10 CONTINUE
  451. END IF
  452. END IF
  453. IF( INFO.EQ.0 ) THEN
  454. M = N
  455. GO TO 30
  456. END IF
  457. INFO = 0
  458. END IF
  459. *
  460. * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
  461. *
  462. IF( WANTZ ) THEN
  463. ORDER = 'B'
  464. ELSE
  465. ORDER = 'E'
  466. END IF
  467. INDIBL = 1
  468. INDISP = INDIBL + N
  469. INDIWO = INDISP + N
  470. CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  471. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  472. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  473. $ IWORK( INDIWO ), INFO )
  474. *
  475. IF( WANTZ ) THEN
  476. CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  477. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  478. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  479. *
  480. * Apply orthogonal matrix used in reduction to tridiagonal
  481. * form to eigenvectors returned by SSTEIN.
  482. *
  483. DO 20 J = 1, M
  484. CALL SCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  485. CALL SGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  486. $ Z( 1, J ), 1 )
  487. 20 CONTINUE
  488. END IF
  489. *
  490. * If matrix was scaled, then rescale eigenvalues appropriately.
  491. *
  492. 30 CONTINUE
  493. IF( ISCALE.EQ.1 ) THEN
  494. IF( INFO.EQ.0 ) THEN
  495. IMAX = M
  496. ELSE
  497. IMAX = INFO - 1
  498. END IF
  499. CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
  500. END IF
  501. *
  502. * If eigenvalues are not in order, then sort them, along with
  503. * eigenvectors.
  504. *
  505. IF( WANTZ ) THEN
  506. DO 50 J = 1, M - 1
  507. I = 0
  508. TMP1 = W( J )
  509. DO 40 JJ = J + 1, M
  510. IF( W( JJ ).LT.TMP1 ) THEN
  511. I = JJ
  512. TMP1 = W( JJ )
  513. END IF
  514. 40 CONTINUE
  515. *
  516. IF( I.NE.0 ) THEN
  517. ITMP1 = IWORK( INDIBL+I-1 )
  518. W( I ) = W( J )
  519. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  520. W( J ) = TMP1
  521. IWORK( INDIBL+J-1 ) = ITMP1
  522. CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  523. IF( INFO.NE.0 ) THEN
  524. ITMP1 = IFAIL( I )
  525. IFAIL( I ) = IFAIL( J )
  526. IFAIL( J ) = ITMP1
  527. END IF
  528. END IF
  529. 50 CONTINUE
  530. END IF
  531. *
  532. RETURN
  533. *
  534. * End of SSBEVX
  535. *
  536. END