You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sbdsdc.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. *> \brief \b SBDSDC
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SBDSDC + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsdc.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsdc.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsdc.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
  22. * WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, UPLO
  26. * INTEGER INFO, LDU, LDVT, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IQ( * ), IWORK( * )
  30. * REAL D( * ), E( * ), Q( * ), U( LDU, * ),
  31. * $ VT( LDVT, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SBDSDC computes the singular value decomposition (SVD) of a real
  41. *> N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
  42. *> using a divide and conquer method, where S is a diagonal matrix
  43. *> with non-negative diagonal elements (the singular values of B), and
  44. *> U and VT are orthogonal matrices of left and right singular vectors,
  45. *> respectively. SBDSDC can be used to compute all singular values,
  46. *> and optionally, singular vectors or singular vectors in compact form.
  47. *>
  48. *> This code makes very mild assumptions about floating point
  49. *> arithmetic. It will work on machines with a guard digit in
  50. *> add/subtract, or on those binary machines without guard digits
  51. *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
  52. *> It could conceivably fail on hexadecimal or decimal machines
  53. *> without guard digits, but we know of none. See SLASD3 for details.
  54. *>
  55. *> The code currently calls SLASDQ if singular values only are desired.
  56. *> However, it can be slightly modified to compute singular values
  57. *> using the divide and conquer method.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] UPLO
  64. *> \verbatim
  65. *> UPLO is CHARACTER*1
  66. *> = 'U': B is upper bidiagonal.
  67. *> = 'L': B is lower bidiagonal.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] COMPQ
  71. *> \verbatim
  72. *> COMPQ is CHARACTER*1
  73. *> Specifies whether singular vectors are to be computed
  74. *> as follows:
  75. *> = 'N': Compute singular values only;
  76. *> = 'P': Compute singular values and compute singular
  77. *> vectors in compact form;
  78. *> = 'I': Compute singular values and singular vectors.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> The order of the matrix B. N >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] D
  88. *> \verbatim
  89. *> D is REAL array, dimension (N)
  90. *> On entry, the n diagonal elements of the bidiagonal matrix B.
  91. *> On exit, if INFO=0, the singular values of B.
  92. *> \endverbatim
  93. *>
  94. *> \param[in,out] E
  95. *> \verbatim
  96. *> E is REAL array, dimension (N-1)
  97. *> On entry, the elements of E contain the offdiagonal
  98. *> elements of the bidiagonal matrix whose SVD is desired.
  99. *> On exit, E has been destroyed.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] U
  103. *> \verbatim
  104. *> U is REAL array, dimension (LDU,N)
  105. *> If COMPQ = 'I', then:
  106. *> On exit, if INFO = 0, U contains the left singular vectors
  107. *> of the bidiagonal matrix.
  108. *> For other values of COMPQ, U is not referenced.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDU
  112. *> \verbatim
  113. *> LDU is INTEGER
  114. *> The leading dimension of the array U. LDU >= 1.
  115. *> If singular vectors are desired, then LDU >= max( 1, N ).
  116. *> \endverbatim
  117. *>
  118. *> \param[out] VT
  119. *> \verbatim
  120. *> VT is REAL array, dimension (LDVT,N)
  121. *> If COMPQ = 'I', then:
  122. *> On exit, if INFO = 0, VT**T contains the right singular
  123. *> vectors of the bidiagonal matrix.
  124. *> For other values of COMPQ, VT is not referenced.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDVT
  128. *> \verbatim
  129. *> LDVT is INTEGER
  130. *> The leading dimension of the array VT. LDVT >= 1.
  131. *> If singular vectors are desired, then LDVT >= max( 1, N ).
  132. *> \endverbatim
  133. *>
  134. *> \param[out] Q
  135. *> \verbatim
  136. *> Q is REAL array, dimension (LDQ)
  137. *> If COMPQ = 'P', then:
  138. *> On exit, if INFO = 0, Q and IQ contain the left
  139. *> and right singular vectors in a compact form,
  140. *> requiring O(N log N) space instead of 2*N**2.
  141. *> In particular, Q contains all the REAL data in
  142. *> LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
  143. *> words of memory, where SMLSIZ is returned by ILAENV and
  144. *> is equal to the maximum size of the subproblems at the
  145. *> bottom of the computation tree (usually about 25).
  146. *> For other values of COMPQ, Q is not referenced.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] IQ
  150. *> \verbatim
  151. *> IQ is INTEGER array, dimension (LDIQ)
  152. *> If COMPQ = 'P', then:
  153. *> On exit, if INFO = 0, Q and IQ contain the left
  154. *> and right singular vectors in a compact form,
  155. *> requiring O(N log N) space instead of 2*N**2.
  156. *> In particular, IQ contains all INTEGER data in
  157. *> LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
  158. *> words of memory, where SMLSIZ is returned by ILAENV and
  159. *> is equal to the maximum size of the subproblems at the
  160. *> bottom of the computation tree (usually about 25).
  161. *> For other values of COMPQ, IQ is not referenced.
  162. *> \endverbatim
  163. *>
  164. *> \param[out] WORK
  165. *> \verbatim
  166. *> WORK is REAL array, dimension (MAX(1,LWORK))
  167. *> If COMPQ = 'N' then LWORK >= (4 * N).
  168. *> If COMPQ = 'P' then LWORK >= (6 * N).
  169. *> If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
  170. *> \endverbatim
  171. *>
  172. *> \param[out] IWORK
  173. *> \verbatim
  174. *> IWORK is INTEGER array, dimension (8*N)
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit.
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  182. *> > 0: The algorithm failed to compute a singular value.
  183. *> The update process of divide and conquer failed.
  184. *> \endverbatim
  185. *
  186. * Authors:
  187. * ========
  188. *
  189. *> \author Univ. of Tennessee
  190. *> \author Univ. of California Berkeley
  191. *> \author Univ. of Colorado Denver
  192. *> \author NAG Ltd.
  193. *
  194. *> \date November 2011
  195. *
  196. *> \ingroup auxOTHERcomputational
  197. *
  198. *> \par Contributors:
  199. * ==================
  200. *>
  201. *> Ming Gu and Huan Ren, Computer Science Division, University of
  202. *> California at Berkeley, USA
  203. *>
  204. * =====================================================================
  205. SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
  206. $ WORK, IWORK, INFO )
  207. *
  208. * -- LAPACK computational routine (version 3.4.0) --
  209. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  210. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  211. * November 2011
  212. *
  213. * .. Scalar Arguments ..
  214. CHARACTER COMPQ, UPLO
  215. INTEGER INFO, LDU, LDVT, N
  216. * ..
  217. * .. Array Arguments ..
  218. INTEGER IQ( * ), IWORK( * )
  219. REAL D( * ), E( * ), Q( * ), U( LDU, * ),
  220. $ VT( LDVT, * ), WORK( * )
  221. * ..
  222. *
  223. * =====================================================================
  224. * Changed dimension statement in comment describing E from (N) to
  225. * (N-1). Sven, 17 Feb 05.
  226. * =====================================================================
  227. *
  228. * .. Parameters ..
  229. REAL ZERO, ONE, TWO
  230. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
  231. * ..
  232. * .. Local Scalars ..
  233. INTEGER DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
  234. $ ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
  235. $ MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
  236. $ SMLSZP, SQRE, START, WSTART, Z
  237. REAL CS, EPS, ORGNRM, P, R, SN
  238. * ..
  239. * .. External Functions ..
  240. LOGICAL LSAME
  241. INTEGER ILAENV
  242. REAL SLAMCH, SLANST
  243. EXTERNAL SLAMCH, SLANST, ILAENV, LSAME
  244. * ..
  245. * .. External Subroutines ..
  246. EXTERNAL SCOPY, SLARTG, SLASCL, SLASD0, SLASDA, SLASDQ,
  247. $ SLASET, SLASR, SSWAP, XERBLA
  248. * ..
  249. * .. Intrinsic Functions ..
  250. INTRINSIC REAL, ABS, INT, LOG, SIGN
  251. * ..
  252. * .. Executable Statements ..
  253. *
  254. * Test the input parameters.
  255. *
  256. INFO = 0
  257. *
  258. IUPLO = 0
  259. IF( LSAME( UPLO, 'U' ) )
  260. $ IUPLO = 1
  261. IF( LSAME( UPLO, 'L' ) )
  262. $ IUPLO = 2
  263. IF( LSAME( COMPQ, 'N' ) ) THEN
  264. ICOMPQ = 0
  265. ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
  266. ICOMPQ = 1
  267. ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  268. ICOMPQ = 2
  269. ELSE
  270. ICOMPQ = -1
  271. END IF
  272. IF( IUPLO.EQ.0 ) THEN
  273. INFO = -1
  274. ELSE IF( ICOMPQ.LT.0 ) THEN
  275. INFO = -2
  276. ELSE IF( N.LT.0 ) THEN
  277. INFO = -3
  278. ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
  279. $ N ) ) ) THEN
  280. INFO = -7
  281. ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
  282. $ N ) ) ) THEN
  283. INFO = -9
  284. END IF
  285. IF( INFO.NE.0 ) THEN
  286. CALL XERBLA( 'SBDSDC', -INFO )
  287. RETURN
  288. END IF
  289. *
  290. * Quick return if possible
  291. *
  292. IF( N.EQ.0 )
  293. $ RETURN
  294. SMLSIZ = ILAENV( 9, 'SBDSDC', ' ', 0, 0, 0, 0 )
  295. IF( N.EQ.1 ) THEN
  296. IF( ICOMPQ.EQ.1 ) THEN
  297. Q( 1 ) = SIGN( ONE, D( 1 ) )
  298. Q( 1+SMLSIZ*N ) = ONE
  299. ELSE IF( ICOMPQ.EQ.2 ) THEN
  300. U( 1, 1 ) = SIGN( ONE, D( 1 ) )
  301. VT( 1, 1 ) = ONE
  302. END IF
  303. D( 1 ) = ABS( D( 1 ) )
  304. RETURN
  305. END IF
  306. NM1 = N - 1
  307. *
  308. * If matrix lower bidiagonal, rotate to be upper bidiagonal
  309. * by applying Givens rotations on the left
  310. *
  311. WSTART = 1
  312. QSTART = 3
  313. IF( ICOMPQ.EQ.1 ) THEN
  314. CALL SCOPY( N, D, 1, Q( 1 ), 1 )
  315. CALL SCOPY( N-1, E, 1, Q( N+1 ), 1 )
  316. END IF
  317. IF( IUPLO.EQ.2 ) THEN
  318. QSTART = 5
  319. WSTART = 2*N - 1
  320. DO 10 I = 1, N - 1
  321. CALL SLARTG( D( I ), E( I ), CS, SN, R )
  322. D( I ) = R
  323. E( I ) = SN*D( I+1 )
  324. D( I+1 ) = CS*D( I+1 )
  325. IF( ICOMPQ.EQ.1 ) THEN
  326. Q( I+2*N ) = CS
  327. Q( I+3*N ) = SN
  328. ELSE IF( ICOMPQ.EQ.2 ) THEN
  329. WORK( I ) = CS
  330. WORK( NM1+I ) = -SN
  331. END IF
  332. 10 CONTINUE
  333. END IF
  334. *
  335. * If ICOMPQ = 0, use SLASDQ to compute the singular values.
  336. *
  337. IF( ICOMPQ.EQ.0 ) THEN
  338. CALL SLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
  339. $ LDU, WORK( WSTART ), INFO )
  340. GO TO 40
  341. END IF
  342. *
  343. * If N is smaller than the minimum divide size SMLSIZ, then solve
  344. * the problem with another solver.
  345. *
  346. IF( N.LE.SMLSIZ ) THEN
  347. IF( ICOMPQ.EQ.2 ) THEN
  348. CALL SLASET( 'A', N, N, ZERO, ONE, U, LDU )
  349. CALL SLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  350. CALL SLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
  351. $ LDU, WORK( WSTART ), INFO )
  352. ELSE IF( ICOMPQ.EQ.1 ) THEN
  353. IU = 1
  354. IVT = IU + N
  355. CALL SLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
  356. $ N )
  357. CALL SLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
  358. $ N )
  359. CALL SLASDQ( 'U', 0, N, N, N, 0, D, E,
  360. $ Q( IVT+( QSTART-1 )*N ), N,
  361. $ Q( IU+( QSTART-1 )*N ), N,
  362. $ Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
  363. $ INFO )
  364. END IF
  365. GO TO 40
  366. END IF
  367. *
  368. IF( ICOMPQ.EQ.2 ) THEN
  369. CALL SLASET( 'A', N, N, ZERO, ONE, U, LDU )
  370. CALL SLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  371. END IF
  372. *
  373. * Scale.
  374. *
  375. ORGNRM = SLANST( 'M', N, D, E )
  376. IF( ORGNRM.EQ.ZERO )
  377. $ RETURN
  378. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
  379. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
  380. *
  381. EPS = SLAMCH( 'Epsilon' )
  382. *
  383. MLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  384. SMLSZP = SMLSIZ + 1
  385. *
  386. IF( ICOMPQ.EQ.1 ) THEN
  387. IU = 1
  388. IVT = 1 + SMLSIZ
  389. DIFL = IVT + SMLSZP
  390. DIFR = DIFL + MLVL
  391. Z = DIFR + MLVL*2
  392. IC = Z + MLVL
  393. IS = IC + 1
  394. POLES = IS + 1
  395. GIVNUM = POLES + 2*MLVL
  396. *
  397. K = 1
  398. GIVPTR = 2
  399. PERM = 3
  400. GIVCOL = PERM + MLVL
  401. END IF
  402. *
  403. DO 20 I = 1, N
  404. IF( ABS( D( I ) ).LT.EPS ) THEN
  405. D( I ) = SIGN( EPS, D( I ) )
  406. END IF
  407. 20 CONTINUE
  408. *
  409. START = 1
  410. SQRE = 0
  411. *
  412. DO 30 I = 1, NM1
  413. IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  414. *
  415. * Subproblem found. First determine its size and then
  416. * apply divide and conquer on it.
  417. *
  418. IF( I.LT.NM1 ) THEN
  419. *
  420. * A subproblem with E(I) small for I < NM1.
  421. *
  422. NSIZE = I - START + 1
  423. ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  424. *
  425. * A subproblem with E(NM1) not too small but I = NM1.
  426. *
  427. NSIZE = N - START + 1
  428. ELSE
  429. *
  430. * A subproblem with E(NM1) small. This implies an
  431. * 1-by-1 subproblem at D(N). Solve this 1-by-1 problem
  432. * first.
  433. *
  434. NSIZE = I - START + 1
  435. IF( ICOMPQ.EQ.2 ) THEN
  436. U( N, N ) = SIGN( ONE, D( N ) )
  437. VT( N, N ) = ONE
  438. ELSE IF( ICOMPQ.EQ.1 ) THEN
  439. Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
  440. Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
  441. END IF
  442. D( N ) = ABS( D( N ) )
  443. END IF
  444. IF( ICOMPQ.EQ.2 ) THEN
  445. CALL SLASD0( NSIZE, SQRE, D( START ), E( START ),
  446. $ U( START, START ), LDU, VT( START, START ),
  447. $ LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
  448. ELSE
  449. CALL SLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
  450. $ E( START ), Q( START+( IU+QSTART-2 )*N ), N,
  451. $ Q( START+( IVT+QSTART-2 )*N ),
  452. $ IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
  453. $ N ), Q( START+( DIFR+QSTART-2 )*N ),
  454. $ Q( START+( Z+QSTART-2 )*N ),
  455. $ Q( START+( POLES+QSTART-2 )*N ),
  456. $ IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
  457. $ N, IQ( START+PERM*N ),
  458. $ Q( START+( GIVNUM+QSTART-2 )*N ),
  459. $ Q( START+( IC+QSTART-2 )*N ),
  460. $ Q( START+( IS+QSTART-2 )*N ),
  461. $ WORK( WSTART ), IWORK, INFO )
  462. END IF
  463. IF( INFO.NE.0 ) THEN
  464. RETURN
  465. END IF
  466. START = I + 1
  467. END IF
  468. 30 CONTINUE
  469. *
  470. * Unscale
  471. *
  472. CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
  473. 40 CONTINUE
  474. *
  475. * Use Selection Sort to minimize swaps of singular vectors
  476. *
  477. DO 60 II = 2, N
  478. I = II - 1
  479. KK = I
  480. P = D( I )
  481. DO 50 J = II, N
  482. IF( D( J ).GT.P ) THEN
  483. KK = J
  484. P = D( J )
  485. END IF
  486. 50 CONTINUE
  487. IF( KK.NE.I ) THEN
  488. D( KK ) = D( I )
  489. D( I ) = P
  490. IF( ICOMPQ.EQ.1 ) THEN
  491. IQ( I ) = KK
  492. ELSE IF( ICOMPQ.EQ.2 ) THEN
  493. CALL SSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
  494. CALL SSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
  495. END IF
  496. ELSE IF( ICOMPQ.EQ.1 ) THEN
  497. IQ( I ) = I
  498. END IF
  499. 60 CONTINUE
  500. *
  501. * If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
  502. *
  503. IF( ICOMPQ.EQ.1 ) THEN
  504. IF( IUPLO.EQ.1 ) THEN
  505. IQ( N ) = 1
  506. ELSE
  507. IQ( N ) = 0
  508. END IF
  509. END IF
  510. *
  511. * If B is lower bidiagonal, update U by those Givens rotations
  512. * which rotated B to be upper bidiagonal
  513. *
  514. IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
  515. $ CALL SLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
  516. *
  517. RETURN
  518. *
  519. * End of SBDSDC
  520. *
  521. END