You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dspevx.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. *> \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  22. * ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, LDZ, M, N
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DSPEVX computes selected eigenvalues and, optionally, eigenvectors
  42. *> of a real symmetric matrix A in packed storage. Eigenvalues/vectors
  43. *> can be selected by specifying either a range of values or a range of
  44. *> indices for the desired eigenvalues.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] JOBZ
  51. *> \verbatim
  52. *> JOBZ is CHARACTER*1
  53. *> = 'N': Compute eigenvalues only;
  54. *> = 'V': Compute eigenvalues and eigenvectors.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] RANGE
  58. *> \verbatim
  59. *> RANGE is CHARACTER*1
  60. *> = 'A': all eigenvalues will be found;
  61. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  62. *> will be found;
  63. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] UPLO
  67. *> \verbatim
  68. *> UPLO is CHARACTER*1
  69. *> = 'U': Upper triangle of A is stored;
  70. *> = 'L': Lower triangle of A is stored.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] N
  74. *> \verbatim
  75. *> N is INTEGER
  76. *> The order of the matrix A. N >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in,out] AP
  80. *> \verbatim
  81. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  82. *> On entry, the upper or lower triangle of the symmetric matrix
  83. *> A, packed columnwise in a linear array. The j-th column of A
  84. *> is stored in the array AP as follows:
  85. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  86. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  87. *>
  88. *> On exit, AP is overwritten by values generated during the
  89. *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
  90. *> and first superdiagonal of the tridiagonal matrix T overwrite
  91. *> the corresponding elements of A, and if UPLO = 'L', the
  92. *> diagonal and first subdiagonal of T overwrite the
  93. *> corresponding elements of A.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] VL
  97. *> \verbatim
  98. *> VL is DOUBLE PRECISION
  99. *> \endverbatim
  100. *>
  101. *> \param[in] VU
  102. *> \verbatim
  103. *> VU is DOUBLE PRECISION
  104. *> If RANGE='V', the lower and upper bounds of the interval to
  105. *> be searched for eigenvalues. VL < VU.
  106. *> Not referenced if RANGE = 'A' or 'I'.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] IL
  110. *> \verbatim
  111. *> IL is INTEGER
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IU
  115. *> \verbatim
  116. *> IU is INTEGER
  117. *> If RANGE='I', the indices (in ascending order) of the
  118. *> smallest and largest eigenvalues to be returned.
  119. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  120. *> Not referenced if RANGE = 'A' or 'V'.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] ABSTOL
  124. *> \verbatim
  125. *> ABSTOL is DOUBLE PRECISION
  126. *> The absolute error tolerance for the eigenvalues.
  127. *> An approximate eigenvalue is accepted as converged
  128. *> when it is determined to lie in an interval [a,b]
  129. *> of width less than or equal to
  130. *>
  131. *> ABSTOL + EPS * max( |a|,|b| ) ,
  132. *>
  133. *> where EPS is the machine precision. If ABSTOL is less than
  134. *> or equal to zero, then EPS*|T| will be used in its place,
  135. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  136. *> by reducing AP to tridiagonal form.
  137. *>
  138. *> Eigenvalues will be computed most accurately when ABSTOL is
  139. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  140. *> If this routine returns with INFO>0, indicating that some
  141. *> eigenvectors did not converge, try setting ABSTOL to
  142. *> 2*DLAMCH('S').
  143. *>
  144. *> See "Computing Small Singular Values of Bidiagonal Matrices
  145. *> with Guaranteed High Relative Accuracy," by Demmel and
  146. *> Kahan, LAPACK Working Note #3.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] M
  150. *> \verbatim
  151. *> M is INTEGER
  152. *> The total number of eigenvalues found. 0 <= M <= N.
  153. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] W
  157. *> \verbatim
  158. *> W is DOUBLE PRECISION array, dimension (N)
  159. *> If INFO = 0, the selected eigenvalues in ascending order.
  160. *> \endverbatim
  161. *>
  162. *> \param[out] Z
  163. *> \verbatim
  164. *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  165. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  166. *> contain the orthonormal eigenvectors of the matrix A
  167. *> corresponding to the selected eigenvalues, with the i-th
  168. *> column of Z holding the eigenvector associated with W(i).
  169. *> If an eigenvector fails to converge, then that column of Z
  170. *> contains the latest approximation to the eigenvector, and the
  171. *> index of the eigenvector is returned in IFAIL.
  172. *> If JOBZ = 'N', then Z is not referenced.
  173. *> Note: the user must ensure that at least max(1,M) columns are
  174. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  175. *> is not known in advance and an upper bound must be used.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDZ
  179. *> \verbatim
  180. *> LDZ is INTEGER
  181. *> The leading dimension of the array Z. LDZ >= 1, and if
  182. *> JOBZ = 'V', LDZ >= max(1,N).
  183. *> \endverbatim
  184. *>
  185. *> \param[out] WORK
  186. *> \verbatim
  187. *> WORK is DOUBLE PRECISION array, dimension (8*N)
  188. *> \endverbatim
  189. *>
  190. *> \param[out] IWORK
  191. *> \verbatim
  192. *> IWORK is INTEGER array, dimension (5*N)
  193. *> \endverbatim
  194. *>
  195. *> \param[out] IFAIL
  196. *> \verbatim
  197. *> IFAIL is INTEGER array, dimension (N)
  198. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  199. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  200. *> indices of the eigenvectors that failed to converge.
  201. *> If JOBZ = 'N', then IFAIL is not referenced.
  202. *> \endverbatim
  203. *>
  204. *> \param[out] INFO
  205. *> \verbatim
  206. *> INFO is INTEGER
  207. *> = 0: successful exit
  208. *> < 0: if INFO = -i, the i-th argument had an illegal value
  209. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  210. *> Their indices are stored in array IFAIL.
  211. *> \endverbatim
  212. *
  213. * Authors:
  214. * ========
  215. *
  216. *> \author Univ. of Tennessee
  217. *> \author Univ. of California Berkeley
  218. *> \author Univ. of Colorado Denver
  219. *> \author NAG Ltd.
  220. *
  221. *> \date November 2011
  222. *
  223. *> \ingroup doubleOTHEReigen
  224. *
  225. * =====================================================================
  226. SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  227. $ ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
  228. $ INFO )
  229. *
  230. * -- LAPACK driver routine (version 3.4.0) --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. * November 2011
  234. *
  235. * .. Scalar Arguments ..
  236. CHARACTER JOBZ, RANGE, UPLO
  237. INTEGER IL, INFO, IU, LDZ, M, N
  238. DOUBLE PRECISION ABSTOL, VL, VU
  239. * ..
  240. * .. Array Arguments ..
  241. INTEGER IFAIL( * ), IWORK( * )
  242. DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * )
  243. * ..
  244. *
  245. * =====================================================================
  246. *
  247. * .. Parameters ..
  248. DOUBLE PRECISION ZERO, ONE
  249. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  250. * ..
  251. * .. Local Scalars ..
  252. LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  253. CHARACTER ORDER
  254. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  255. $ INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
  256. $ J, JJ, NSPLIT
  257. DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  258. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  259. * ..
  260. * .. External Functions ..
  261. LOGICAL LSAME
  262. DOUBLE PRECISION DLAMCH, DLANSP
  263. EXTERNAL LSAME, DLAMCH, DLANSP
  264. * ..
  265. * .. External Subroutines ..
  266. EXTERNAL DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
  267. $ DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  268. * ..
  269. * .. Intrinsic Functions ..
  270. INTRINSIC MAX, MIN, SQRT
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. * Test the input parameters.
  275. *
  276. WANTZ = LSAME( JOBZ, 'V' )
  277. ALLEIG = LSAME( RANGE, 'A' )
  278. VALEIG = LSAME( RANGE, 'V' )
  279. INDEIG = LSAME( RANGE, 'I' )
  280. *
  281. INFO = 0
  282. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  283. INFO = -1
  284. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  285. INFO = -2
  286. ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  287. $ THEN
  288. INFO = -3
  289. ELSE IF( N.LT.0 ) THEN
  290. INFO = -4
  291. ELSE
  292. IF( VALEIG ) THEN
  293. IF( N.GT.0 .AND. VU.LE.VL )
  294. $ INFO = -7
  295. ELSE IF( INDEIG ) THEN
  296. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  297. INFO = -8
  298. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  299. INFO = -9
  300. END IF
  301. END IF
  302. END IF
  303. IF( INFO.EQ.0 ) THEN
  304. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  305. $ INFO = -14
  306. END IF
  307. *
  308. IF( INFO.NE.0 ) THEN
  309. CALL XERBLA( 'DSPEVX', -INFO )
  310. RETURN
  311. END IF
  312. *
  313. * Quick return if possible
  314. *
  315. M = 0
  316. IF( N.EQ.0 )
  317. $ RETURN
  318. *
  319. IF( N.EQ.1 ) THEN
  320. IF( ALLEIG .OR. INDEIG ) THEN
  321. M = 1
  322. W( 1 ) = AP( 1 )
  323. ELSE
  324. IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
  325. M = 1
  326. W( 1 ) = AP( 1 )
  327. END IF
  328. END IF
  329. IF( WANTZ )
  330. $ Z( 1, 1 ) = ONE
  331. RETURN
  332. END IF
  333. *
  334. * Get machine constants.
  335. *
  336. SAFMIN = DLAMCH( 'Safe minimum' )
  337. EPS = DLAMCH( 'Precision' )
  338. SMLNUM = SAFMIN / EPS
  339. BIGNUM = ONE / SMLNUM
  340. RMIN = SQRT( SMLNUM )
  341. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  342. *
  343. * Scale matrix to allowable range, if necessary.
  344. *
  345. ISCALE = 0
  346. ABSTLL = ABSTOL
  347. IF( VALEIG ) THEN
  348. VLL = VL
  349. VUU = VU
  350. ELSE
  351. VLL = ZERO
  352. VUU = ZERO
  353. END IF
  354. ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
  355. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  356. ISCALE = 1
  357. SIGMA = RMIN / ANRM
  358. ELSE IF( ANRM.GT.RMAX ) THEN
  359. ISCALE = 1
  360. SIGMA = RMAX / ANRM
  361. END IF
  362. IF( ISCALE.EQ.1 ) THEN
  363. CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  364. IF( ABSTOL.GT.0 )
  365. $ ABSTLL = ABSTOL*SIGMA
  366. IF( VALEIG ) THEN
  367. VLL = VL*SIGMA
  368. VUU = VU*SIGMA
  369. END IF
  370. END IF
  371. *
  372. * Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
  373. *
  374. INDTAU = 1
  375. INDE = INDTAU + N
  376. INDD = INDE + N
  377. INDWRK = INDD + N
  378. CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
  379. $ WORK( INDTAU ), IINFO )
  380. *
  381. * If all eigenvalues are desired and ABSTOL is less than or equal
  382. * to zero, then call DSTERF or DOPGTR and SSTEQR. If this fails
  383. * for some eigenvalue, then try DSTEBZ.
  384. *
  385. TEST = .FALSE.
  386. IF (INDEIG) THEN
  387. IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  388. TEST = .TRUE.
  389. END IF
  390. END IF
  391. IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  392. CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  393. INDEE = INDWRK + 2*N
  394. IF( .NOT.WANTZ ) THEN
  395. CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  396. CALL DSTERF( N, W, WORK( INDEE ), INFO )
  397. ELSE
  398. CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  399. $ WORK( INDWRK ), IINFO )
  400. CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  401. CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  402. $ WORK( INDWRK ), INFO )
  403. IF( INFO.EQ.0 ) THEN
  404. DO 10 I = 1, N
  405. IFAIL( I ) = 0
  406. 10 CONTINUE
  407. END IF
  408. END IF
  409. IF( INFO.EQ.0 ) THEN
  410. M = N
  411. GO TO 20
  412. END IF
  413. INFO = 0
  414. END IF
  415. *
  416. * Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  417. *
  418. IF( WANTZ ) THEN
  419. ORDER = 'B'
  420. ELSE
  421. ORDER = 'E'
  422. END IF
  423. INDIBL = 1
  424. INDISP = INDIBL + N
  425. INDIWO = INDISP + N
  426. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  427. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  428. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  429. $ IWORK( INDIWO ), INFO )
  430. *
  431. IF( WANTZ ) THEN
  432. CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  433. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  434. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  435. *
  436. * Apply orthogonal matrix used in reduction to tridiagonal
  437. * form to eigenvectors returned by DSTEIN.
  438. *
  439. CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  440. $ WORK( INDWRK ), IINFO )
  441. END IF
  442. *
  443. * If matrix was scaled, then rescale eigenvalues appropriately.
  444. *
  445. 20 CONTINUE
  446. IF( ISCALE.EQ.1 ) THEN
  447. IF( INFO.EQ.0 ) THEN
  448. IMAX = M
  449. ELSE
  450. IMAX = INFO - 1
  451. END IF
  452. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  453. END IF
  454. *
  455. * If eigenvalues are not in order, then sort them, along with
  456. * eigenvectors.
  457. *
  458. IF( WANTZ ) THEN
  459. DO 40 J = 1, M - 1
  460. I = 0
  461. TMP1 = W( J )
  462. DO 30 JJ = J + 1, M
  463. IF( W( JJ ).LT.TMP1 ) THEN
  464. I = JJ
  465. TMP1 = W( JJ )
  466. END IF
  467. 30 CONTINUE
  468. *
  469. IF( I.NE.0 ) THEN
  470. ITMP1 = IWORK( INDIBL+I-1 )
  471. W( I ) = W( J )
  472. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  473. W( J ) = TMP1
  474. IWORK( INDIBL+J-1 ) = ITMP1
  475. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  476. IF( INFO.NE.0 ) THEN
  477. ITMP1 = IFAIL( I )
  478. IFAIL( I ) = IFAIL( J )
  479. IFAIL( J ) = ITMP1
  480. END IF
  481. END IF
  482. 40 CONTINUE
  483. END IF
  484. *
  485. RETURN
  486. *
  487. * End of DSPEVX
  488. *
  489. END