You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgsvj1.f 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783
  1. *> \brief \b DGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGSVJ1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
  22. * EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION EPS, SFMIN, TOL
  26. * INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
  27. * CHARACTER*1 JOBV
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
  31. * $ WORK( LWORK )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DGSVJ1 is called from SGESVJ as a pre-processor and that is its main
  41. *> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
  42. *> it targets only particular pivots and it does not check convergence
  43. *> (stopping criterion). Few tunning parameters (marked by [TP]) are
  44. *> available for the implementer.
  45. *>
  46. *> Further Details
  47. *> ~~~~~~~~~~~~~~~
  48. *> DGSVJ1 applies few sweeps of Jacobi rotations in the column space of
  49. *> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
  50. *> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
  51. *> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
  52. *> [x]'s in the following scheme:
  53. *>
  54. *> | * * * [x] [x] [x]|
  55. *> | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
  56. *> | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
  57. *> |[x] [x] [x] * * * |
  58. *> |[x] [x] [x] * * * |
  59. *> |[x] [x] [x] * * * |
  60. *>
  61. *> In terms of the columns of A, the first N1 columns are rotated 'against'
  62. *> the remaining N-N1 columns, trying to increase the angle between the
  63. *> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
  64. *> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
  65. *> The number of sweeps is given in NSWEEP and the orthogonality threshold
  66. *> is given in TOL.
  67. *> \endverbatim
  68. *
  69. * Arguments:
  70. * ==========
  71. *
  72. *> \param[in] JOBV
  73. *> \verbatim
  74. *> JOBV is CHARACTER*1
  75. *> Specifies whether the output from this procedure is used
  76. *> to compute the matrix V:
  77. *> = 'V': the product of the Jacobi rotations is accumulated
  78. *> by postmulyiplying the N-by-N array V.
  79. *> (See the description of V.)
  80. *> = 'A': the product of the Jacobi rotations is accumulated
  81. *> by postmulyiplying the MV-by-N array V.
  82. *> (See the descriptions of MV and V.)
  83. *> = 'N': the Jacobi rotations are not accumulated.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] M
  87. *> \verbatim
  88. *> M is INTEGER
  89. *> The number of rows of the input matrix A. M >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] N
  93. *> \verbatim
  94. *> N is INTEGER
  95. *> The number of columns of the input matrix A.
  96. *> M >= N >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] N1
  100. *> \verbatim
  101. *> N1 is INTEGER
  102. *> N1 specifies the 2 x 2 block partition, the first N1 columns are
  103. *> rotated 'against' the remaining N-N1 columns of A.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] A
  107. *> \verbatim
  108. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  109. *> On entry, M-by-N matrix A, such that A*diag(D) represents
  110. *> the input matrix.
  111. *> On exit,
  112. *> A_onexit * D_onexit represents the input matrix A*diag(D)
  113. *> post-multiplied by a sequence of Jacobi rotations, where the
  114. *> rotation threshold and the total number of sweeps are given in
  115. *> TOL and NSWEEP, respectively.
  116. *> (See the descriptions of N1, D, TOL and NSWEEP.)
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDA
  120. *> \verbatim
  121. *> LDA is INTEGER
  122. *> The leading dimension of the array A. LDA >= max(1,M).
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] D
  126. *> \verbatim
  127. *> D is DOUBLE PRECISION array, dimension (N)
  128. *> The array D accumulates the scaling factors from the fast scaled
  129. *> Jacobi rotations.
  130. *> On entry, A*diag(D) represents the input matrix.
  131. *> On exit, A_onexit*diag(D_onexit) represents the input matrix
  132. *> post-multiplied by a sequence of Jacobi rotations, where the
  133. *> rotation threshold and the total number of sweeps are given in
  134. *> TOL and NSWEEP, respectively.
  135. *> (See the descriptions of N1, A, TOL and NSWEEP.)
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] SVA
  139. *> \verbatim
  140. *> SVA is DOUBLE PRECISION array, dimension (N)
  141. *> On entry, SVA contains the Euclidean norms of the columns of
  142. *> the matrix A*diag(D).
  143. *> On exit, SVA contains the Euclidean norms of the columns of
  144. *> the matrix onexit*diag(D_onexit).
  145. *> \endverbatim
  146. *>
  147. *> \param[in] MV
  148. *> \verbatim
  149. *> MV is INTEGER
  150. *> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
  151. *> sequence of Jacobi rotations.
  152. *> If JOBV = 'N', then MV is not referenced.
  153. *> \endverbatim
  154. *>
  155. *> \param[in,out] V
  156. *> \verbatim
  157. *> V is DOUBLE PRECISION array, dimension (LDV,N)
  158. *> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
  159. *> sequence of Jacobi rotations.
  160. *> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
  161. *> sequence of Jacobi rotations.
  162. *> If JOBV = 'N', then V is not referenced.
  163. *> \endverbatim
  164. *>
  165. *> \param[in] LDV
  166. *> \verbatim
  167. *> LDV is INTEGER
  168. *> The leading dimension of the array V, LDV >= 1.
  169. *> If JOBV = 'V', LDV .GE. N.
  170. *> If JOBV = 'A', LDV .GE. MV.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] EPS
  174. *> \verbatim
  175. *> EPS is DOUBLE PRECISION
  176. *> EPS = DLAMCH('Epsilon')
  177. *> \endverbatim
  178. *>
  179. *> \param[in] SFMIN
  180. *> \verbatim
  181. *> SFMIN is DOUBLE PRECISION
  182. *> SFMIN = DLAMCH('Safe Minimum')
  183. *> \endverbatim
  184. *>
  185. *> \param[in] TOL
  186. *> \verbatim
  187. *> TOL is DOUBLE PRECISION
  188. *> TOL is the threshold for Jacobi rotations. For a pair
  189. *> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
  190. *> applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] NSWEEP
  194. *> \verbatim
  195. *> NSWEEP is INTEGER
  196. *> NSWEEP is the number of sweeps of Jacobi rotations to be
  197. *> performed.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] WORK
  201. *> \verbatim
  202. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  203. *> \endverbatim
  204. *>
  205. *> \param[in] LWORK
  206. *> \verbatim
  207. *> LWORK is INTEGER
  208. *> LWORK is the dimension of WORK. LWORK .GE. M.
  209. *> \endverbatim
  210. *>
  211. *> \param[out] INFO
  212. *> \verbatim
  213. *> INFO is INTEGER
  214. *> = 0 : successful exit.
  215. *> < 0 : if INFO = -i, then the i-th argument had an illegal value
  216. *> \endverbatim
  217. *
  218. * Authors:
  219. * ========
  220. *
  221. *> \author Univ. of Tennessee
  222. *> \author Univ. of California Berkeley
  223. *> \author Univ. of Colorado Denver
  224. *> \author NAG Ltd.
  225. *
  226. *> \date September 2012
  227. *
  228. *> \ingroup doubleOTHERcomputational
  229. *
  230. *> \par Contributors:
  231. * ==================
  232. *>
  233. *> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
  234. *
  235. * =====================================================================
  236. SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
  237. $ EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
  238. *
  239. * -- LAPACK computational routine (version 3.4.2) --
  240. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  241. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  242. * September 2012
  243. *
  244. * .. Scalar Arguments ..
  245. DOUBLE PRECISION EPS, SFMIN, TOL
  246. INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
  247. CHARACTER*1 JOBV
  248. * ..
  249. * .. Array Arguments ..
  250. DOUBLE PRECISION A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
  251. $ WORK( LWORK )
  252. * ..
  253. *
  254. * =====================================================================
  255. *
  256. * .. Local Parameters ..
  257. DOUBLE PRECISION ZERO, HALF, ONE
  258. PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
  259. * ..
  260. * .. Local Scalars ..
  261. DOUBLE PRECISION AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
  262. $ BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,
  263. $ ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
  264. $ TEMP1, THETA, THSIGN
  265. INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
  266. $ ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
  267. $ p, PSKIPPED, q, ROWSKIP, SWBAND
  268. LOGICAL APPLV, ROTOK, RSVEC
  269. * ..
  270. * .. Local Arrays ..
  271. DOUBLE PRECISION FASTR( 5 )
  272. * ..
  273. * .. Intrinsic Functions ..
  274. INTRINSIC DABS, DMAX1, DBLE, MIN0, DSIGN, DSQRT
  275. * ..
  276. * .. External Functions ..
  277. DOUBLE PRECISION DDOT, DNRM2
  278. INTEGER IDAMAX
  279. LOGICAL LSAME
  280. EXTERNAL IDAMAX, LSAME, DDOT, DNRM2
  281. * ..
  282. * .. External Subroutines ..
  283. EXTERNAL DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP
  284. * ..
  285. * .. Executable Statements ..
  286. *
  287. * Test the input parameters.
  288. *
  289. APPLV = LSAME( JOBV, 'A' )
  290. RSVEC = LSAME( JOBV, 'V' )
  291. IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  292. INFO = -1
  293. ELSE IF( M.LT.0 ) THEN
  294. INFO = -2
  295. ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
  296. INFO = -3
  297. ELSE IF( N1.LT.0 ) THEN
  298. INFO = -4
  299. ELSE IF( LDA.LT.M ) THEN
  300. INFO = -6
  301. ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
  302. INFO = -9
  303. ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
  304. $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
  305. INFO = -11
  306. ELSE IF( TOL.LE.EPS ) THEN
  307. INFO = -14
  308. ELSE IF( NSWEEP.LT.0 ) THEN
  309. INFO = -15
  310. ELSE IF( LWORK.LT.M ) THEN
  311. INFO = -17
  312. ELSE
  313. INFO = 0
  314. END IF
  315. *
  316. * #:(
  317. IF( INFO.NE.0 ) THEN
  318. CALL XERBLA( 'DGSVJ1', -INFO )
  319. RETURN
  320. END IF
  321. *
  322. IF( RSVEC ) THEN
  323. MVL = N
  324. ELSE IF( APPLV ) THEN
  325. MVL = MV
  326. END IF
  327. RSVEC = RSVEC .OR. APPLV
  328. ROOTEPS = DSQRT( EPS )
  329. ROOTSFMIN = DSQRT( SFMIN )
  330. SMALL = SFMIN / EPS
  331. BIG = ONE / SFMIN
  332. ROOTBIG = ONE / ROOTSFMIN
  333. LARGE = BIG / DSQRT( DBLE( M*N ) )
  334. BIGTHETA = ONE / ROOTEPS
  335. ROOTTOL = DSQRT( TOL )
  336. *
  337. * .. Initialize the right singular vector matrix ..
  338. *
  339. * RSVEC = LSAME( JOBV, 'Y' )
  340. *
  341. EMPTSW = N1*( N-N1 )
  342. NOTROT = 0
  343. FASTR( 1 ) = ZERO
  344. *
  345. * .. Row-cyclic pivot strategy with de Rijk's pivoting ..
  346. *
  347. KBL = MIN0( 8, N )
  348. NBLR = N1 / KBL
  349. IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
  350. * .. the tiling is nblr-by-nblc [tiles]
  351. NBLC = ( N-N1 ) / KBL
  352. IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
  353. BLSKIP = ( KBL**2 ) + 1
  354. *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
  355. ROWSKIP = MIN0( 5, KBL )
  356. *[TP] ROWSKIP is a tuning parameter.
  357. SWBAND = 0
  358. *[TP] SWBAND is a tuning parameter. It is meaningful and effective
  359. * if SGESVJ is used as a computational routine in the preconditioned
  360. * Jacobi SVD algorithm SGESVJ.
  361. *
  362. *
  363. * | * * * [x] [x] [x]|
  364. * | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
  365. * | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
  366. * |[x] [x] [x] * * * |
  367. * |[x] [x] [x] * * * |
  368. * |[x] [x] [x] * * * |
  369. *
  370. *
  371. DO 1993 i = 1, NSWEEP
  372. * .. go go go ...
  373. *
  374. MXAAPQ = ZERO
  375. MXSINJ = ZERO
  376. ISWROT = 0
  377. *
  378. NOTROT = 0
  379. PSKIPPED = 0
  380. *
  381. DO 2000 ibr = 1, NBLR
  382. igl = ( ibr-1 )*KBL + 1
  383. *
  384. *
  385. *........................................................
  386. * ... go to the off diagonal blocks
  387. igl = ( ibr-1 )*KBL + 1
  388. DO 2010 jbc = 1, NBLC
  389. jgl = N1 + ( jbc-1 )*KBL + 1
  390. * doing the block at ( ibr, jbc )
  391. IJBLSK = 0
  392. DO 2100 p = igl, MIN0( igl+KBL-1, N1 )
  393. AAPP = SVA( p )
  394. IF( AAPP.GT.ZERO ) THEN
  395. PSKIPPED = 0
  396. DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
  397. *
  398. AAQQ = SVA( q )
  399. IF( AAQQ.GT.ZERO ) THEN
  400. AAPP0 = AAPP
  401. *
  402. * .. M x 2 Jacobi SVD ..
  403. *
  404. * .. Safe Gram matrix computation ..
  405. *
  406. IF( AAQQ.GE.ONE ) THEN
  407. IF( AAPP.GE.AAQQ ) THEN
  408. ROTOK = ( SMALL*AAPP ).LE.AAQQ
  409. ELSE
  410. ROTOK = ( SMALL*AAQQ ).LE.AAPP
  411. END IF
  412. IF( AAPP.LT.( BIG / AAQQ ) ) THEN
  413. AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
  414. $ q ), 1 )*D( p )*D( q ) / AAQQ )
  415. $ / AAPP
  416. ELSE
  417. CALL DCOPY( M, A( 1, p ), 1, WORK, 1 )
  418. CALL DLASCL( 'G', 0, 0, AAPP, D( p ),
  419. $ M, 1, WORK, LDA, IERR )
  420. AAPQ = DDOT( M, WORK, 1, A( 1, q ),
  421. $ 1 )*D( q ) / AAQQ
  422. END IF
  423. ELSE
  424. IF( AAPP.GE.AAQQ ) THEN
  425. ROTOK = AAPP.LE.( AAQQ / SMALL )
  426. ELSE
  427. ROTOK = AAQQ.LE.( AAPP / SMALL )
  428. END IF
  429. IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
  430. AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
  431. $ q ), 1 )*D( p )*D( q ) / AAQQ )
  432. $ / AAPP
  433. ELSE
  434. CALL DCOPY( M, A( 1, q ), 1, WORK, 1 )
  435. CALL DLASCL( 'G', 0, 0, AAQQ, D( q ),
  436. $ M, 1, WORK, LDA, IERR )
  437. AAPQ = DDOT( M, WORK, 1, A( 1, p ),
  438. $ 1 )*D( p ) / AAPP
  439. END IF
  440. END IF
  441. MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) )
  442. * TO rotate or NOT to rotate, THAT is the question ...
  443. *
  444. IF( DABS( AAPQ ).GT.TOL ) THEN
  445. NOTROT = 0
  446. * ROTATED = ROTATED + 1
  447. PSKIPPED = 0
  448. ISWROT = ISWROT + 1
  449. *
  450. IF( ROTOK ) THEN
  451. *
  452. AQOAP = AAQQ / AAPP
  453. APOAQ = AAPP / AAQQ
  454. THETA = -HALF*DABS(AQOAP-APOAQ) / AAPQ
  455. IF( AAQQ.GT.AAPP0 )THETA = -THETA
  456. IF( DABS( THETA ).GT.BIGTHETA ) THEN
  457. T = HALF / THETA
  458. FASTR( 3 ) = T*D( p ) / D( q )
  459. FASTR( 4 ) = -T*D( q ) / D( p )
  460. CALL DROTM( M, A( 1, p ), 1,
  461. $ A( 1, q ), 1, FASTR )
  462. IF( RSVEC )CALL DROTM( MVL,
  463. $ V( 1, p ), 1,
  464. $ V( 1, q ), 1,
  465. $ FASTR )
  466. SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
  467. $ ONE+T*APOAQ*AAPQ ) )
  468. AAPP = AAPP*DSQRT( DMAX1( ZERO,
  469. $ ONE-T*AQOAP*AAPQ ) )
  470. MXSINJ = DMAX1( MXSINJ, DABS( T ) )
  471. ELSE
  472. *
  473. * .. choose correct signum for THETA and rotate
  474. *
  475. THSIGN = -DSIGN( ONE, AAPQ )
  476. IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
  477. T = ONE / ( THETA+THSIGN*
  478. $ DSQRT( ONE+THETA*THETA ) )
  479. CS = DSQRT( ONE / ( ONE+T*T ) )
  480. SN = T*CS
  481. MXSINJ = DMAX1( MXSINJ, DABS( SN ) )
  482. SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
  483. $ ONE+T*APOAQ*AAPQ ) )
  484. AAPP = AAPP*DSQRT( DMAX1( ZERO,
  485. $ ONE-T*AQOAP*AAPQ ) )
  486. APOAQ = D( p ) / D( q )
  487. AQOAP = D( q ) / D( p )
  488. IF( D( p ).GE.ONE ) THEN
  489. *
  490. IF( D( q ).GE.ONE ) THEN
  491. FASTR( 3 ) = T*APOAQ
  492. FASTR( 4 ) = -T*AQOAP
  493. D( p ) = D( p )*CS
  494. D( q ) = D( q )*CS
  495. CALL DROTM( M, A( 1, p ), 1,
  496. $ A( 1, q ), 1,
  497. $ FASTR )
  498. IF( RSVEC )CALL DROTM( MVL,
  499. $ V( 1, p ), 1, V( 1, q ),
  500. $ 1, FASTR )
  501. ELSE
  502. CALL DAXPY( M, -T*AQOAP,
  503. $ A( 1, q ), 1,
  504. $ A( 1, p ), 1 )
  505. CALL DAXPY( M, CS*SN*APOAQ,
  506. $ A( 1, p ), 1,
  507. $ A( 1, q ), 1 )
  508. IF( RSVEC ) THEN
  509. CALL DAXPY( MVL, -T*AQOAP,
  510. $ V( 1, q ), 1,
  511. $ V( 1, p ), 1 )
  512. CALL DAXPY( MVL,
  513. $ CS*SN*APOAQ,
  514. $ V( 1, p ), 1,
  515. $ V( 1, q ), 1 )
  516. END IF
  517. D( p ) = D( p )*CS
  518. D( q ) = D( q ) / CS
  519. END IF
  520. ELSE
  521. IF( D( q ).GE.ONE ) THEN
  522. CALL DAXPY( M, T*APOAQ,
  523. $ A( 1, p ), 1,
  524. $ A( 1, q ), 1 )
  525. CALL DAXPY( M, -CS*SN*AQOAP,
  526. $ A( 1, q ), 1,
  527. $ A( 1, p ), 1 )
  528. IF( RSVEC ) THEN
  529. CALL DAXPY( MVL, T*APOAQ,
  530. $ V( 1, p ), 1,
  531. $ V( 1, q ), 1 )
  532. CALL DAXPY( MVL,
  533. $ -CS*SN*AQOAP,
  534. $ V( 1, q ), 1,
  535. $ V( 1, p ), 1 )
  536. END IF
  537. D( p ) = D( p ) / CS
  538. D( q ) = D( q )*CS
  539. ELSE
  540. IF( D( p ).GE.D( q ) ) THEN
  541. CALL DAXPY( M, -T*AQOAP,
  542. $ A( 1, q ), 1,
  543. $ A( 1, p ), 1 )
  544. CALL DAXPY( M, CS*SN*APOAQ,
  545. $ A( 1, p ), 1,
  546. $ A( 1, q ), 1 )
  547. D( p ) = D( p )*CS
  548. D( q ) = D( q ) / CS
  549. IF( RSVEC ) THEN
  550. CALL DAXPY( MVL,
  551. $ -T*AQOAP,
  552. $ V( 1, q ), 1,
  553. $ V( 1, p ), 1 )
  554. CALL DAXPY( MVL,
  555. $ CS*SN*APOAQ,
  556. $ V( 1, p ), 1,
  557. $ V( 1, q ), 1 )
  558. END IF
  559. ELSE
  560. CALL DAXPY( M, T*APOAQ,
  561. $ A( 1, p ), 1,
  562. $ A( 1, q ), 1 )
  563. CALL DAXPY( M,
  564. $ -CS*SN*AQOAP,
  565. $ A( 1, q ), 1,
  566. $ A( 1, p ), 1 )
  567. D( p ) = D( p ) / CS
  568. D( q ) = D( q )*CS
  569. IF( RSVEC ) THEN
  570. CALL DAXPY( MVL,
  571. $ T*APOAQ, V( 1, p ),
  572. $ 1, V( 1, q ), 1 )
  573. CALL DAXPY( MVL,
  574. $ -CS*SN*AQOAP,
  575. $ V( 1, q ), 1,
  576. $ V( 1, p ), 1 )
  577. END IF
  578. END IF
  579. END IF
  580. END IF
  581. END IF
  582. ELSE
  583. IF( AAPP.GT.AAQQ ) THEN
  584. CALL DCOPY( M, A( 1, p ), 1, WORK,
  585. $ 1 )
  586. CALL DLASCL( 'G', 0, 0, AAPP, ONE,
  587. $ M, 1, WORK, LDA, IERR )
  588. CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
  589. $ M, 1, A( 1, q ), LDA,
  590. $ IERR )
  591. TEMP1 = -AAPQ*D( p ) / D( q )
  592. CALL DAXPY( M, TEMP1, WORK, 1,
  593. $ A( 1, q ), 1 )
  594. CALL DLASCL( 'G', 0, 0, ONE, AAQQ,
  595. $ M, 1, A( 1, q ), LDA,
  596. $ IERR )
  597. SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
  598. $ ONE-AAPQ*AAPQ ) )
  599. MXSINJ = DMAX1( MXSINJ, SFMIN )
  600. ELSE
  601. CALL DCOPY( M, A( 1, q ), 1, WORK,
  602. $ 1 )
  603. CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
  604. $ M, 1, WORK, LDA, IERR )
  605. CALL DLASCL( 'G', 0, 0, AAPP, ONE,
  606. $ M, 1, A( 1, p ), LDA,
  607. $ IERR )
  608. TEMP1 = -AAPQ*D( q ) / D( p )
  609. CALL DAXPY( M, TEMP1, WORK, 1,
  610. $ A( 1, p ), 1 )
  611. CALL DLASCL( 'G', 0, 0, ONE, AAPP,
  612. $ M, 1, A( 1, p ), LDA,
  613. $ IERR )
  614. SVA( p ) = AAPP*DSQRT( DMAX1( ZERO,
  615. $ ONE-AAPQ*AAPQ ) )
  616. MXSINJ = DMAX1( MXSINJ, SFMIN )
  617. END IF
  618. END IF
  619. * END IF ROTOK THEN ... ELSE
  620. *
  621. * In the case of cancellation in updating SVA(q)
  622. * .. recompute SVA(q)
  623. IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
  624. $ THEN
  625. IF( ( AAQQ.LT.ROOTBIG ) .AND.
  626. $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
  627. SVA( q ) = DNRM2( M, A( 1, q ), 1 )*
  628. $ D( q )
  629. ELSE
  630. T = ZERO
  631. AAQQ = ONE
  632. CALL DLASSQ( M, A( 1, q ), 1, T,
  633. $ AAQQ )
  634. SVA( q ) = T*DSQRT( AAQQ )*D( q )
  635. END IF
  636. END IF
  637. IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
  638. IF( ( AAPP.LT.ROOTBIG ) .AND.
  639. $ ( AAPP.GT.ROOTSFMIN ) ) THEN
  640. AAPP = DNRM2( M, A( 1, p ), 1 )*
  641. $ D( p )
  642. ELSE
  643. T = ZERO
  644. AAPP = ONE
  645. CALL DLASSQ( M, A( 1, p ), 1, T,
  646. $ AAPP )
  647. AAPP = T*DSQRT( AAPP )*D( p )
  648. END IF
  649. SVA( p ) = AAPP
  650. END IF
  651. * end of OK rotation
  652. ELSE
  653. NOTROT = NOTROT + 1
  654. * SKIPPED = SKIPPED + 1
  655. PSKIPPED = PSKIPPED + 1
  656. IJBLSK = IJBLSK + 1
  657. END IF
  658. ELSE
  659. NOTROT = NOTROT + 1
  660. PSKIPPED = PSKIPPED + 1
  661. IJBLSK = IJBLSK + 1
  662. END IF
  663. * IF ( NOTROT .GE. EMPTSW ) GO TO 2011
  664. IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
  665. $ THEN
  666. SVA( p ) = AAPP
  667. NOTROT = 0
  668. GO TO 2011
  669. END IF
  670. IF( ( i.LE.SWBAND ) .AND.
  671. $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
  672. AAPP = -AAPP
  673. NOTROT = 0
  674. GO TO 2203
  675. END IF
  676. *
  677. 2200 CONTINUE
  678. * end of the q-loop
  679. 2203 CONTINUE
  680. SVA( p ) = AAPP
  681. *
  682. ELSE
  683. IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
  684. $ MIN0( jgl+KBL-1, N ) - jgl + 1
  685. IF( AAPP.LT.ZERO )NOTROT = 0
  686. *** IF ( NOTROT .GE. EMPTSW ) GO TO 2011
  687. END IF
  688. 2100 CONTINUE
  689. * end of the p-loop
  690. 2010 CONTINUE
  691. * end of the jbc-loop
  692. 2011 CONTINUE
  693. *2011 bailed out of the jbc-loop
  694. DO 2012 p = igl, MIN0( igl+KBL-1, N )
  695. SVA( p ) = DABS( SVA( p ) )
  696. 2012 CONTINUE
  697. *** IF ( NOTROT .GE. EMPTSW ) GO TO 1994
  698. 2000 CONTINUE
  699. *2000 :: end of the ibr-loop
  700. *
  701. * .. update SVA(N)
  702. IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
  703. $ THEN
  704. SVA( N ) = DNRM2( M, A( 1, N ), 1 )*D( N )
  705. ELSE
  706. T = ZERO
  707. AAPP = ONE
  708. CALL DLASSQ( M, A( 1, N ), 1, T, AAPP )
  709. SVA( N ) = T*DSQRT( AAPP )*D( N )
  710. END IF
  711. *
  712. * Additional steering devices
  713. *
  714. IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
  715. $ ( ISWROT.LE.N ) ) )SWBAND = i
  716. IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.DBLE( N )*TOL ) .AND.
  717. $ ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
  718. GO TO 1994
  719. END IF
  720. *
  721. IF( NOTROT.GE.EMPTSW )GO TO 1994
  722. 1993 CONTINUE
  723. * end i=1:NSWEEP loop
  724. * #:) Reaching this point means that the procedure has completed the given
  725. * number of sweeps.
  726. INFO = NSWEEP - 1
  727. GO TO 1995
  728. 1994 CONTINUE
  729. * #:) Reaching this point means that during the i-th sweep all pivots were
  730. * below the given threshold, causing early exit.
  731. INFO = 0
  732. * #:) INFO = 0 confirms successful iterations.
  733. 1995 CONTINUE
  734. *
  735. * Sort the vector D
  736. *
  737. DO 5991 p = 1, N - 1
  738. q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
  739. IF( p.NE.q ) THEN
  740. TEMP1 = SVA( p )
  741. SVA( p ) = SVA( q )
  742. SVA( q ) = TEMP1
  743. TEMP1 = D( p )
  744. D( p ) = D( q )
  745. D( q ) = TEMP1
  746. CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
  747. IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
  748. END IF
  749. 5991 CONTINUE
  750. *
  751. RETURN
  752. * ..
  753. * .. END OF DGSVJ1
  754. * ..
  755. END