You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgerfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. *> \brief \b DGERFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGERFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  22. * X, LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * ), IWORK( * )
  30. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  31. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DGERFS improves the computed solution to a system of linear
  41. *> equations and provides error bounds and backward error estimates for
  42. *> the solution.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] TRANS
  49. *> \verbatim
  50. *> TRANS is CHARACTER*1
  51. *> Specifies the form of the system of equations:
  52. *> = 'N': A * X = B (No transpose)
  53. *> = 'T': A**T * X = B (Transpose)
  54. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand sides, i.e., the number of columns
  67. *> of the matrices B and X. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  73. *> The original N-by-N matrix A.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] AF
  83. *> \verbatim
  84. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  85. *> The factors L and U from the factorization A = P*L*U
  86. *> as computed by DGETRF.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDAF
  90. *> \verbatim
  91. *> LDAF is INTEGER
  92. *> The leading dimension of the array AF. LDAF >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] IPIV
  96. *> \verbatim
  97. *> IPIV is INTEGER array, dimension (N)
  98. *> The pivot indices from DGETRF; for 1<=i<=N, row i of the
  99. *> matrix was interchanged with row IPIV(i).
  100. *> \endverbatim
  101. *>
  102. *> \param[in] B
  103. *> \verbatim
  104. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  105. *> The right hand side matrix B.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDB
  109. *> \verbatim
  110. *> LDB is INTEGER
  111. *> The leading dimension of the array B. LDB >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] X
  115. *> \verbatim
  116. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  117. *> On entry, the solution matrix X, as computed by DGETRS.
  118. *> On exit, the improved solution matrix X.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDX
  122. *> \verbatim
  123. *> LDX is INTEGER
  124. *> The leading dimension of the array X. LDX >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] FERR
  128. *> \verbatim
  129. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  130. *> The estimated forward error bound for each solution vector
  131. *> X(j) (the j-th column of the solution matrix X).
  132. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  133. *> is an estimated upper bound for the magnitude of the largest
  134. *> element in (X(j) - XTRUE) divided by the magnitude of the
  135. *> largest element in X(j). The estimate is as reliable as
  136. *> the estimate for RCOND, and is almost always a slight
  137. *> overestimate of the true error.
  138. *> \endverbatim
  139. *>
  140. *> \param[out] BERR
  141. *> \verbatim
  142. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  143. *> The componentwise relative backward error of each solution
  144. *> vector X(j) (i.e., the smallest relative change in
  145. *> any element of A or B that makes X(j) an exact solution).
  146. *> \endverbatim
  147. *>
  148. *> \param[out] WORK
  149. *> \verbatim
  150. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] IWORK
  154. *> \verbatim
  155. *> IWORK is INTEGER array, dimension (N)
  156. *> \endverbatim
  157. *>
  158. *> \param[out] INFO
  159. *> \verbatim
  160. *> INFO is INTEGER
  161. *> = 0: successful exit
  162. *> < 0: if INFO = -i, the i-th argument had an illegal value
  163. *> \endverbatim
  164. *
  165. *> \par Internal Parameters:
  166. * =========================
  167. *>
  168. *> \verbatim
  169. *> ITMAX is the maximum number of steps of iterative refinement.
  170. *> \endverbatim
  171. *
  172. * Authors:
  173. * ========
  174. *
  175. *> \author Univ. of Tennessee
  176. *> \author Univ. of California Berkeley
  177. *> \author Univ. of Colorado Denver
  178. *> \author NAG Ltd.
  179. *
  180. *> \date November 2011
  181. *
  182. *> \ingroup doubleGEcomputational
  183. *
  184. * =====================================================================
  185. SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  186. $ X, LDX, FERR, BERR, WORK, IWORK, INFO )
  187. *
  188. * -- LAPACK computational routine (version 3.4.0) --
  189. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  190. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191. * November 2011
  192. *
  193. * .. Scalar Arguments ..
  194. CHARACTER TRANS
  195. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  196. * ..
  197. * .. Array Arguments ..
  198. INTEGER IPIV( * ), IWORK( * )
  199. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  200. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  201. * ..
  202. *
  203. * =====================================================================
  204. *
  205. * .. Parameters ..
  206. INTEGER ITMAX
  207. PARAMETER ( ITMAX = 5 )
  208. DOUBLE PRECISION ZERO
  209. PARAMETER ( ZERO = 0.0D+0 )
  210. DOUBLE PRECISION ONE
  211. PARAMETER ( ONE = 1.0D+0 )
  212. DOUBLE PRECISION TWO
  213. PARAMETER ( TWO = 2.0D+0 )
  214. DOUBLE PRECISION THREE
  215. PARAMETER ( THREE = 3.0D+0 )
  216. * ..
  217. * .. Local Scalars ..
  218. LOGICAL NOTRAN
  219. CHARACTER TRANST
  220. INTEGER COUNT, I, J, K, KASE, NZ
  221. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  222. * ..
  223. * .. Local Arrays ..
  224. INTEGER ISAVE( 3 )
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL DAXPY, DCOPY, DGEMV, DGETRS, DLACN2, XERBLA
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC ABS, MAX
  231. * ..
  232. * .. External Functions ..
  233. LOGICAL LSAME
  234. DOUBLE PRECISION DLAMCH
  235. EXTERNAL LSAME, DLAMCH
  236. * ..
  237. * .. Executable Statements ..
  238. *
  239. * Test the input parameters.
  240. *
  241. INFO = 0
  242. NOTRAN = LSAME( TRANS, 'N' )
  243. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  244. $ LSAME( TRANS, 'C' ) ) THEN
  245. INFO = -1
  246. ELSE IF( N.LT.0 ) THEN
  247. INFO = -2
  248. ELSE IF( NRHS.LT.0 ) THEN
  249. INFO = -3
  250. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  251. INFO = -5
  252. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  253. INFO = -7
  254. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  255. INFO = -10
  256. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  257. INFO = -12
  258. END IF
  259. IF( INFO.NE.0 ) THEN
  260. CALL XERBLA( 'DGERFS', -INFO )
  261. RETURN
  262. END IF
  263. *
  264. * Quick return if possible
  265. *
  266. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  267. DO 10 J = 1, NRHS
  268. FERR( J ) = ZERO
  269. BERR( J ) = ZERO
  270. 10 CONTINUE
  271. RETURN
  272. END IF
  273. *
  274. IF( NOTRAN ) THEN
  275. TRANST = 'T'
  276. ELSE
  277. TRANST = 'N'
  278. END IF
  279. *
  280. * NZ = maximum number of nonzero elements in each row of A, plus 1
  281. *
  282. NZ = N + 1
  283. EPS = DLAMCH( 'Epsilon' )
  284. SAFMIN = DLAMCH( 'Safe minimum' )
  285. SAFE1 = NZ*SAFMIN
  286. SAFE2 = SAFE1 / EPS
  287. *
  288. * Do for each right hand side
  289. *
  290. DO 140 J = 1, NRHS
  291. *
  292. COUNT = 1
  293. LSTRES = THREE
  294. 20 CONTINUE
  295. *
  296. * Loop until stopping criterion is satisfied.
  297. *
  298. * Compute residual R = B - op(A) * X,
  299. * where op(A) = A, A**T, or A**H, depending on TRANS.
  300. *
  301. CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  302. CALL DGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
  303. $ WORK( N+1 ), 1 )
  304. *
  305. * Compute componentwise relative backward error from formula
  306. *
  307. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  308. *
  309. * where abs(Z) is the componentwise absolute value of the matrix
  310. * or vector Z. If the i-th component of the denominator is less
  311. * than SAFE2, then SAFE1 is added to the i-th components of the
  312. * numerator and denominator before dividing.
  313. *
  314. DO 30 I = 1, N
  315. WORK( I ) = ABS( B( I, J ) )
  316. 30 CONTINUE
  317. *
  318. * Compute abs(op(A))*abs(X) + abs(B).
  319. *
  320. IF( NOTRAN ) THEN
  321. DO 50 K = 1, N
  322. XK = ABS( X( K, J ) )
  323. DO 40 I = 1, N
  324. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  325. 40 CONTINUE
  326. 50 CONTINUE
  327. ELSE
  328. DO 70 K = 1, N
  329. S = ZERO
  330. DO 60 I = 1, N
  331. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  332. 60 CONTINUE
  333. WORK( K ) = WORK( K ) + S
  334. 70 CONTINUE
  335. END IF
  336. S = ZERO
  337. DO 80 I = 1, N
  338. IF( WORK( I ).GT.SAFE2 ) THEN
  339. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  340. ELSE
  341. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  342. $ ( WORK( I )+SAFE1 ) )
  343. END IF
  344. 80 CONTINUE
  345. BERR( J ) = S
  346. *
  347. * Test stopping criterion. Continue iterating if
  348. * 1) The residual BERR(J) is larger than machine epsilon, and
  349. * 2) BERR(J) decreased by at least a factor of 2 during the
  350. * last iteration, and
  351. * 3) At most ITMAX iterations tried.
  352. *
  353. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  354. $ COUNT.LE.ITMAX ) THEN
  355. *
  356. * Update solution and try again.
  357. *
  358. CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  359. $ INFO )
  360. CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  361. LSTRES = BERR( J )
  362. COUNT = COUNT + 1
  363. GO TO 20
  364. END IF
  365. *
  366. * Bound error from formula
  367. *
  368. * norm(X - XTRUE) / norm(X) .le. FERR =
  369. * norm( abs(inv(op(A)))*
  370. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  371. *
  372. * where
  373. * norm(Z) is the magnitude of the largest component of Z
  374. * inv(op(A)) is the inverse of op(A)
  375. * abs(Z) is the componentwise absolute value of the matrix or
  376. * vector Z
  377. * NZ is the maximum number of nonzeros in any row of A, plus 1
  378. * EPS is machine epsilon
  379. *
  380. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  381. * is incremented by SAFE1 if the i-th component of
  382. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  383. *
  384. * Use DLACN2 to estimate the infinity-norm of the matrix
  385. * inv(op(A)) * diag(W),
  386. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  387. *
  388. DO 90 I = 1, N
  389. IF( WORK( I ).GT.SAFE2 ) THEN
  390. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  391. ELSE
  392. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  393. END IF
  394. 90 CONTINUE
  395. *
  396. KASE = 0
  397. 100 CONTINUE
  398. CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  399. $ KASE, ISAVE )
  400. IF( KASE.NE.0 ) THEN
  401. IF( KASE.EQ.1 ) THEN
  402. *
  403. * Multiply by diag(W)*inv(op(A)**T).
  404. *
  405. CALL DGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
  406. $ N, INFO )
  407. DO 110 I = 1, N
  408. WORK( N+I ) = WORK( I )*WORK( N+I )
  409. 110 CONTINUE
  410. ELSE
  411. *
  412. * Multiply by inv(op(A))*diag(W).
  413. *
  414. DO 120 I = 1, N
  415. WORK( N+I ) = WORK( I )*WORK( N+I )
  416. 120 CONTINUE
  417. CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  418. $ INFO )
  419. END IF
  420. GO TO 100
  421. END IF
  422. *
  423. * Normalize error.
  424. *
  425. LSTRES = ZERO
  426. DO 130 I = 1, N
  427. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  428. 130 CONTINUE
  429. IF( LSTRES.NE.ZERO )
  430. $ FERR( J ) = FERR( J ) / LSTRES
  431. *
  432. 140 CONTINUE
  433. *
  434. RETURN
  435. *
  436. * End of DGERFS
  437. *
  438. END