You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cungr2.f 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. *> \brief \b CUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNGR2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungr2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungr2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungr2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CUNGR2 generates an m by n complex matrix Q with orthonormal rows,
  37. *> which is defined as the last m rows of a product of k elementary
  38. *> reflectors of order n
  39. *>
  40. *> Q = H(1)**H H(2)**H . . . H(k)**H
  41. *>
  42. *> as returned by CGERQF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. N >= M.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. M >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX array, dimension (LDA,N)
  70. *> On entry, the (m-k+i)-th row must contain the vector which
  71. *> defines the elementary reflector H(i), for i = 1,2,...,k, as
  72. *> returned by CGERQF in the last k rows of its array argument
  73. *> A.
  74. *> On exit, the m-by-n matrix Q.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The first dimension of the array A. LDA >= max(1,M).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] TAU
  84. *> \verbatim
  85. *> TAU is COMPLEX array, dimension (K)
  86. *> TAU(i) must contain the scalar factor of the elementary
  87. *> reflector H(i), as returned by CGERQF.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is COMPLEX array, dimension (M)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument has an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date September 2012
  111. *
  112. *> \ingroup complexOTHERcomputational
  113. *
  114. * =====================================================================
  115. SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
  116. *
  117. * -- LAPACK computational routine (version 3.4.2) --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. * September 2012
  121. *
  122. * .. Scalar Arguments ..
  123. INTEGER INFO, K, LDA, M, N
  124. * ..
  125. * .. Array Arguments ..
  126. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. COMPLEX ONE, ZERO
  133. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
  134. $ ZERO = ( 0.0E+0, 0.0E+0 ) )
  135. * ..
  136. * .. Local Scalars ..
  137. INTEGER I, II, J, L
  138. * ..
  139. * .. External Subroutines ..
  140. EXTERNAL CLACGV, CLARF, CSCAL, XERBLA
  141. * ..
  142. * .. Intrinsic Functions ..
  143. INTRINSIC CONJG, MAX
  144. * ..
  145. * .. Executable Statements ..
  146. *
  147. * Test the input arguments
  148. *
  149. INFO = 0
  150. IF( M.LT.0 ) THEN
  151. INFO = -1
  152. ELSE IF( N.LT.M ) THEN
  153. INFO = -2
  154. ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  155. INFO = -3
  156. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  157. INFO = -5
  158. END IF
  159. IF( INFO.NE.0 ) THEN
  160. CALL XERBLA( 'CUNGR2', -INFO )
  161. RETURN
  162. END IF
  163. *
  164. * Quick return if possible
  165. *
  166. IF( M.LE.0 )
  167. $ RETURN
  168. *
  169. IF( K.LT.M ) THEN
  170. *
  171. * Initialise rows 1:m-k to rows of the unit matrix
  172. *
  173. DO 20 J = 1, N
  174. DO 10 L = 1, M - K
  175. A( L, J ) = ZERO
  176. 10 CONTINUE
  177. IF( J.GT.N-M .AND. J.LE.N-K )
  178. $ A( M-N+J, J ) = ONE
  179. 20 CONTINUE
  180. END IF
  181. *
  182. DO 40 I = 1, K
  183. II = M - K + I
  184. *
  185. * Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
  186. *
  187. CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
  188. A( II, N-M+II ) = ONE
  189. CALL CLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA,
  190. $ CONJG( TAU( I ) ), A, LDA, WORK )
  191. CALL CSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
  192. CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
  193. A( II, N-M+II ) = ONE - CONJG( TAU( I ) )
  194. *
  195. * Set A(m-k+i,n-k+i+1:n) to zero
  196. *
  197. DO 30 L = N - M + II + 1, N
  198. A( II, L ) = ZERO
  199. 30 CONTINUE
  200. 40 CONTINUE
  201. RETURN
  202. *
  203. * End of CUNGR2
  204. *
  205. END