You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrttf.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. *> \brief \b CTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTRTTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrttf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrttf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrttf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CTRTTF copies a triangular matrix A from standard full format (TR)
  38. *> to rectangular full packed format (TF) .
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF in Normal mode is wanted;
  48. *> = 'C': ARF in Conjugate Transpose mode is wanted;
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension ( LDA, N )
  67. *> On entry, the triangular matrix A. If UPLO = 'U', the
  68. *> leading N-by-N upper triangular part of the array A contains
  69. *> the upper triangular matrix, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of the array A contains
  72. *> the lower triangular matrix, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the matrix A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] ARF
  83. *> \verbatim
  84. *> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
  85. *> On exit, the upper or lower triangular matrix A stored in
  86. *> RFP format. For a further discussion see Notes below.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] INFO
  90. *> \verbatim
  91. *> INFO is INTEGER
  92. *> = 0: successful exit
  93. *> < 0: if INFO = -i, the i-th argument had an illegal value
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date September 2012
  105. *
  106. *> \ingroup complexOTHERcomputational
  107. *
  108. *> \par Further Details:
  109. * =====================
  110. *>
  111. *> \verbatim
  112. *>
  113. *> We first consider Standard Packed Format when N is even.
  114. *> We give an example where N = 6.
  115. *>
  116. *> AP is Upper AP is Lower
  117. *>
  118. *> 00 01 02 03 04 05 00
  119. *> 11 12 13 14 15 10 11
  120. *> 22 23 24 25 20 21 22
  121. *> 33 34 35 30 31 32 33
  122. *> 44 45 40 41 42 43 44
  123. *> 55 50 51 52 53 54 55
  124. *>
  125. *>
  126. *> Let TRANSR = 'N'. RFP holds AP as follows:
  127. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  128. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  129. *> conjugate-transpose of the first three columns of AP upper.
  130. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  131. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  132. *> conjugate-transpose of the last three columns of AP lower.
  133. *> To denote conjugate we place -- above the element. This covers the
  134. *> case N even and TRANSR = 'N'.
  135. *>
  136. *> RFP A RFP A
  137. *>
  138. *> -- -- --
  139. *> 03 04 05 33 43 53
  140. *> -- --
  141. *> 13 14 15 00 44 54
  142. *> --
  143. *> 23 24 25 10 11 55
  144. *>
  145. *> 33 34 35 20 21 22
  146. *> --
  147. *> 00 44 45 30 31 32
  148. *> -- --
  149. *> 01 11 55 40 41 42
  150. *> -- -- --
  151. *> 02 12 22 50 51 52
  152. *>
  153. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  154. *> transpose of RFP A above. One therefore gets:
  155. *>
  156. *>
  157. *> RFP A RFP A
  158. *>
  159. *> -- -- -- -- -- -- -- -- -- --
  160. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  161. *> -- -- -- -- -- -- -- -- -- --
  162. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  163. *> -- -- -- -- -- -- -- -- -- --
  164. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  165. *>
  166. *>
  167. *> We next consider Standard Packed Format when N is odd.
  168. *> We give an example where N = 5.
  169. *>
  170. *> AP is Upper AP is Lower
  171. *>
  172. *> 00 01 02 03 04 00
  173. *> 11 12 13 14 10 11
  174. *> 22 23 24 20 21 22
  175. *> 33 34 30 31 32 33
  176. *> 44 40 41 42 43 44
  177. *>
  178. *>
  179. *> Let TRANSR = 'N'. RFP holds AP as follows:
  180. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  181. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  182. *> conjugate-transpose of the first two columns of AP upper.
  183. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  184. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  185. *> conjugate-transpose of the last two columns of AP lower.
  186. *> To denote conjugate we place -- above the element. This covers the
  187. *> case N odd and TRANSR = 'N'.
  188. *>
  189. *> RFP A RFP A
  190. *>
  191. *> -- --
  192. *> 02 03 04 00 33 43
  193. *> --
  194. *> 12 13 14 10 11 44
  195. *>
  196. *> 22 23 24 20 21 22
  197. *> --
  198. *> 00 33 34 30 31 32
  199. *> -- --
  200. *> 01 11 44 40 41 42
  201. *>
  202. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  203. *> transpose of RFP A above. One therefore gets:
  204. *>
  205. *>
  206. *> RFP A RFP A
  207. *>
  208. *> -- -- -- -- -- -- -- -- --
  209. *> 02 12 22 00 01 00 10 20 30 40 50
  210. *> -- -- -- -- -- -- -- -- --
  211. *> 03 13 23 33 11 33 11 21 31 41 51
  212. *> -- -- -- -- -- -- -- -- --
  213. *> 04 14 24 34 44 43 44 22 32 42 52
  214. *> \endverbatim
  215. *>
  216. * =====================================================================
  217. SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  218. *
  219. * -- LAPACK computational routine (version 3.4.2) --
  220. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  221. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  222. * September 2012
  223. *
  224. * .. Scalar Arguments ..
  225. CHARACTER TRANSR, UPLO
  226. INTEGER INFO, N, LDA
  227. * ..
  228. * .. Array Arguments ..
  229. COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  230. * ..
  231. *
  232. * =====================================================================
  233. *
  234. * .. Parameters ..
  235. * ..
  236. * .. Local Scalars ..
  237. LOGICAL LOWER, NISODD, NORMALTRANSR
  238. INTEGER I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
  239. * ..
  240. * .. External Functions ..
  241. LOGICAL LSAME
  242. EXTERNAL LSAME
  243. * ..
  244. * .. External Subroutines ..
  245. EXTERNAL XERBLA
  246. * ..
  247. * .. Intrinsic Functions ..
  248. INTRINSIC CONJG, MAX, MOD
  249. * ..
  250. * .. Executable Statements ..
  251. *
  252. * Test the input parameters.
  253. *
  254. INFO = 0
  255. NORMALTRANSR = LSAME( TRANSR, 'N' )
  256. LOWER = LSAME( UPLO, 'L' )
  257. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  258. INFO = -1
  259. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  260. INFO = -2
  261. ELSE IF( N.LT.0 ) THEN
  262. INFO = -3
  263. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  264. INFO = -5
  265. END IF
  266. IF( INFO.NE.0 ) THEN
  267. CALL XERBLA( 'CTRTTF', -INFO )
  268. RETURN
  269. END IF
  270. *
  271. * Quick return if possible
  272. *
  273. IF( N.LE.1 ) THEN
  274. IF( N.EQ.1 ) THEN
  275. IF( NORMALTRANSR ) THEN
  276. ARF( 0 ) = A( 0, 0 )
  277. ELSE
  278. ARF( 0 ) = CONJG( A( 0, 0 ) )
  279. END IF
  280. END IF
  281. RETURN
  282. END IF
  283. *
  284. * Size of array ARF(1:2,0:nt-1)
  285. *
  286. NT = N*( N+1 ) / 2
  287. *
  288. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  289. *
  290. IF( LOWER ) THEN
  291. N2 = N / 2
  292. N1 = N - N2
  293. ELSE
  294. N1 = N / 2
  295. N2 = N - N1
  296. END IF
  297. *
  298. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  299. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  300. * N--by--(N+1)/2.
  301. *
  302. IF( MOD( N, 2 ).EQ.0 ) THEN
  303. K = N / 2
  304. NISODD = .FALSE.
  305. IF( .NOT.LOWER )
  306. $ NP1X2 = N + N + 2
  307. ELSE
  308. NISODD = .TRUE.
  309. IF( .NOT.LOWER )
  310. $ NX2 = N + N
  311. END IF
  312. *
  313. IF( NISODD ) THEN
  314. *
  315. * N is odd
  316. *
  317. IF( NORMALTRANSR ) THEN
  318. *
  319. * N is odd and TRANSR = 'N'
  320. *
  321. IF( LOWER ) THEN
  322. *
  323. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  324. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  325. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
  326. *
  327. IJ = 0
  328. DO J = 0, N2
  329. DO I = N1, N2 + J
  330. ARF( IJ ) = CONJG( A( N2+J, I ) )
  331. IJ = IJ + 1
  332. END DO
  333. DO I = J, N - 1
  334. ARF( IJ ) = A( I, J )
  335. IJ = IJ + 1
  336. END DO
  337. END DO
  338. *
  339. ELSE
  340. *
  341. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  342. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  343. * T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
  344. *
  345. IJ = NT - N
  346. DO J = N - 1, N1, -1
  347. DO I = 0, J
  348. ARF( IJ ) = A( I, J )
  349. IJ = IJ + 1
  350. END DO
  351. DO L = J - N1, N1 - 1
  352. ARF( IJ ) = CONJG( A( J-N1, L ) )
  353. IJ = IJ + 1
  354. END DO
  355. IJ = IJ - NX2
  356. END DO
  357. *
  358. END IF
  359. *
  360. ELSE
  361. *
  362. * N is odd and TRANSR = 'C'
  363. *
  364. IF( LOWER ) THEN
  365. *
  366. * SRPA for LOWER, TRANSPOSE and N is odd
  367. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  368. * T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
  369. *
  370. IJ = 0
  371. DO J = 0, N2 - 1
  372. DO I = 0, J
  373. ARF( IJ ) = CONJG( A( J, I ) )
  374. IJ = IJ + 1
  375. END DO
  376. DO I = N1 + J, N - 1
  377. ARF( IJ ) = A( I, N1+J )
  378. IJ = IJ + 1
  379. END DO
  380. END DO
  381. DO J = N2, N - 1
  382. DO I = 0, N1 - 1
  383. ARF( IJ ) = CONJG( A( J, I ) )
  384. IJ = IJ + 1
  385. END DO
  386. END DO
  387. *
  388. ELSE
  389. *
  390. * SRPA for UPPER, TRANSPOSE and N is odd
  391. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  392. * T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2
  393. *
  394. IJ = 0
  395. DO J = 0, N1
  396. DO I = N1, N - 1
  397. ARF( IJ ) = CONJG( A( J, I ) )
  398. IJ = IJ + 1
  399. END DO
  400. END DO
  401. DO J = 0, N1 - 1
  402. DO I = 0, J
  403. ARF( IJ ) = A( I, J )
  404. IJ = IJ + 1
  405. END DO
  406. DO L = N2 + J, N - 1
  407. ARF( IJ ) = CONJG( A( N2+J, L ) )
  408. IJ = IJ + 1
  409. END DO
  410. END DO
  411. *
  412. END IF
  413. *
  414. END IF
  415. *
  416. ELSE
  417. *
  418. * N is even
  419. *
  420. IF( NORMALTRANSR ) THEN
  421. *
  422. * N is even and TRANSR = 'N'
  423. *
  424. IF( LOWER ) THEN
  425. *
  426. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  427. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  428. * T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
  429. *
  430. IJ = 0
  431. DO J = 0, K - 1
  432. DO I = K, K + J
  433. ARF( IJ ) = CONJG( A( K+J, I ) )
  434. IJ = IJ + 1
  435. END DO
  436. DO I = J, N - 1
  437. ARF( IJ ) = A( I, J )
  438. IJ = IJ + 1
  439. END DO
  440. END DO
  441. *
  442. ELSE
  443. *
  444. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  445. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  446. * T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
  447. *
  448. IJ = NT - N - 1
  449. DO J = N - 1, K, -1
  450. DO I = 0, J
  451. ARF( IJ ) = A( I, J )
  452. IJ = IJ + 1
  453. END DO
  454. DO L = J - K, K - 1
  455. ARF( IJ ) = CONJG( A( J-K, L ) )
  456. IJ = IJ + 1
  457. END DO
  458. IJ = IJ - NP1X2
  459. END DO
  460. *
  461. END IF
  462. *
  463. ELSE
  464. *
  465. * N is even and TRANSR = 'C'
  466. *
  467. IF( LOWER ) THEN
  468. *
  469. * SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
  470. * T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
  471. * T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
  472. *
  473. IJ = 0
  474. J = K
  475. DO I = K, N - 1
  476. ARF( IJ ) = A( I, J )
  477. IJ = IJ + 1
  478. END DO
  479. DO J = 0, K - 2
  480. DO I = 0, J
  481. ARF( IJ ) = CONJG( A( J, I ) )
  482. IJ = IJ + 1
  483. END DO
  484. DO I = K + 1 + J, N - 1
  485. ARF( IJ ) = A( I, K+1+J )
  486. IJ = IJ + 1
  487. END DO
  488. END DO
  489. DO J = K - 1, N - 1
  490. DO I = 0, K - 1
  491. ARF( IJ ) = CONJG( A( J, I ) )
  492. IJ = IJ + 1
  493. END DO
  494. END DO
  495. *
  496. ELSE
  497. *
  498. * SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
  499. * T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
  500. * T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
  501. *
  502. IJ = 0
  503. DO J = 0, K
  504. DO I = K, N - 1
  505. ARF( IJ ) = CONJG( A( J, I ) )
  506. IJ = IJ + 1
  507. END DO
  508. END DO
  509. DO J = 0, K - 2
  510. DO I = 0, J
  511. ARF( IJ ) = A( I, J )
  512. IJ = IJ + 1
  513. END DO
  514. DO L = K + 1 + J, N - 1
  515. ARF( IJ ) = CONJG( A( K+1+J, L ) )
  516. IJ = IJ + 1
  517. END DO
  518. END DO
  519. *
  520. * Note that here J = K-1
  521. *
  522. DO I = 0, J
  523. ARF( IJ ) = A( I, J )
  524. IJ = IJ + 1
  525. END DO
  526. *
  527. END IF
  528. *
  529. END IF
  530. *
  531. END IF
  532. *
  533. RETURN
  534. *
  535. * End of CTRTTF
  536. *
  537. END