You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpstrf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. *> \brief \b CPSTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPSTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpstrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpstrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpstrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * REAL TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * )
  30. * REAL WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CPSTRF computes the Cholesky factorization with complete
  41. *> pivoting of a complex Hermitian positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**H * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**H, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 3 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[out] PIV
  93. *> \verbatim
  94. *> PIV is INTEGER array, dimension (N)
  95. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] RANK
  99. *> \verbatim
  100. *> RANK is INTEGER
  101. *> The rank of A given by the number of steps the algorithm
  102. *> completed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] TOL
  106. *> \verbatim
  107. *> TOL is REAL
  108. *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109. *> will be used. The algorithm terminates at the (K-1)st step
  110. *> if the pivot <= TOL.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is REAL array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is indefinite. See Section 7 of
  126. *> LAPACK Working Note #161 for further information.
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \date November 2011
  138. *
  139. *> \ingroup complexOTHERcomputational
  140. *
  141. * =====================================================================
  142. SUBROUTINE CPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  143. *
  144. * -- LAPACK computational routine (version 3.4.0) --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. * November 2011
  148. *
  149. * .. Scalar Arguments ..
  150. REAL TOL
  151. INTEGER INFO, LDA, N, RANK
  152. CHARACTER UPLO
  153. * ..
  154. * .. Array Arguments ..
  155. COMPLEX A( LDA, * )
  156. REAL WORK( 2*N )
  157. INTEGER PIV( N )
  158. * ..
  159. *
  160. * =====================================================================
  161. *
  162. * .. Parameters ..
  163. REAL ONE, ZERO
  164. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  165. COMPLEX CONE
  166. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  167. * ..
  168. * .. Local Scalars ..
  169. COMPLEX CTEMP
  170. REAL AJJ, SSTOP, STEMP
  171. INTEGER I, ITEMP, J, JB, K, NB, PVT
  172. LOGICAL UPPER
  173. * ..
  174. * .. External Functions ..
  175. REAL SLAMCH
  176. INTEGER ILAENV
  177. LOGICAL LSAME, SISNAN
  178. EXTERNAL SLAMCH, ILAENV, LSAME, SISNAN
  179. * ..
  180. * .. External Subroutines ..
  181. EXTERNAL CGEMV, CHERK, CLACGV, CPSTF2, CSSCAL, CSWAP,
  182. $ XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC CONJG, MAX, MIN, REAL, SQRT, MAXLOC
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. * Test the input parameters.
  190. *
  191. INFO = 0
  192. UPPER = LSAME( UPLO, 'U' )
  193. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194. INFO = -1
  195. ELSE IF( N.LT.0 ) THEN
  196. INFO = -2
  197. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  198. INFO = -4
  199. END IF
  200. IF( INFO.NE.0 ) THEN
  201. CALL XERBLA( 'CPSTRF', -INFO )
  202. RETURN
  203. END IF
  204. *
  205. * Quick return if possible
  206. *
  207. IF( N.EQ.0 )
  208. $ RETURN
  209. *
  210. * Get block size
  211. *
  212. NB = ILAENV( 1, 'CPOTRF', UPLO, N, -1, -1, -1 )
  213. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  214. *
  215. * Use unblocked code
  216. *
  217. CALL CPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  218. $ INFO )
  219. GO TO 230
  220. *
  221. ELSE
  222. *
  223. * Initialize PIV
  224. *
  225. DO 100 I = 1, N
  226. PIV( I ) = I
  227. 100 CONTINUE
  228. *
  229. * Compute stopping value
  230. *
  231. DO 110 I = 1, N
  232. WORK( I ) = REAL( A( I, I ) )
  233. 110 CONTINUE
  234. PVT = MAXLOC( WORK( 1:N ), 1 )
  235. AJJ = REAL( A( PVT, PVT ) )
  236. IF( AJJ.EQ.ZERO.OR.SISNAN( AJJ ) ) THEN
  237. RANK = 0
  238. INFO = 1
  239. GO TO 230
  240. END IF
  241. *
  242. * Compute stopping value if not supplied
  243. *
  244. IF( TOL.LT.ZERO ) THEN
  245. SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
  246. ELSE
  247. SSTOP = TOL
  248. END IF
  249. *
  250. *
  251. IF( UPPER ) THEN
  252. *
  253. * Compute the Cholesky factorization P**T * A * P = U**H * U
  254. *
  255. DO 160 K = 1, N, NB
  256. *
  257. * Account for last block not being NB wide
  258. *
  259. JB = MIN( NB, N-K+1 )
  260. *
  261. * Set relevant part of first half of WORK to zero,
  262. * holds dot products
  263. *
  264. DO 120 I = K, N
  265. WORK( I ) = 0
  266. 120 CONTINUE
  267. *
  268. DO 150 J = K, K + JB - 1
  269. *
  270. * Find pivot, test for exit, else swap rows and columns
  271. * Update dot products, compute possible pivots which are
  272. * stored in the second half of WORK
  273. *
  274. DO 130 I = J, N
  275. *
  276. IF( J.GT.K ) THEN
  277. WORK( I ) = WORK( I ) +
  278. $ REAL( CONJG( A( J-1, I ) )*
  279. $ A( J-1, I ) )
  280. END IF
  281. WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
  282. *
  283. 130 CONTINUE
  284. *
  285. IF( J.GT.1 ) THEN
  286. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  287. PVT = ITEMP + J - 1
  288. AJJ = WORK( N+PVT )
  289. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  290. A( J, J ) = AJJ
  291. GO TO 220
  292. END IF
  293. END IF
  294. *
  295. IF( J.NE.PVT ) THEN
  296. *
  297. * Pivot OK, so can now swap pivot rows and columns
  298. *
  299. A( PVT, PVT ) = A( J, J )
  300. CALL CSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  301. IF( PVT.LT.N )
  302. $ CALL CSWAP( N-PVT, A( J, PVT+1 ), LDA,
  303. $ A( PVT, PVT+1 ), LDA )
  304. DO 140 I = J + 1, PVT - 1
  305. CTEMP = CONJG( A( J, I ) )
  306. A( J, I ) = CONJG( A( I, PVT ) )
  307. A( I, PVT ) = CTEMP
  308. 140 CONTINUE
  309. A( J, PVT ) = CONJG( A( J, PVT ) )
  310. *
  311. * Swap dot products and PIV
  312. *
  313. STEMP = WORK( J )
  314. WORK( J ) = WORK( PVT )
  315. WORK( PVT ) = STEMP
  316. ITEMP = PIV( PVT )
  317. PIV( PVT ) = PIV( J )
  318. PIV( J ) = ITEMP
  319. END IF
  320. *
  321. AJJ = SQRT( AJJ )
  322. A( J, J ) = AJJ
  323. *
  324. * Compute elements J+1:N of row J.
  325. *
  326. IF( J.LT.N ) THEN
  327. CALL CLACGV( J-1, A( 1, J ), 1 )
  328. CALL CGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
  329. $ LDA, A( K, J ), 1, CONE, A( J, J+1 ),
  330. $ LDA )
  331. CALL CLACGV( J-1, A( 1, J ), 1 )
  332. CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  333. END IF
  334. *
  335. 150 CONTINUE
  336. *
  337. * Update trailing matrix, J already incremented
  338. *
  339. IF( K+JB.LE.N ) THEN
  340. CALL CHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
  341. $ A( K, J ), LDA, ONE, A( J, J ), LDA )
  342. END IF
  343. *
  344. 160 CONTINUE
  345. *
  346. ELSE
  347. *
  348. * Compute the Cholesky factorization P**T * A * P = L * L**H
  349. *
  350. DO 210 K = 1, N, NB
  351. *
  352. * Account for last block not being NB wide
  353. *
  354. JB = MIN( NB, N-K+1 )
  355. *
  356. * Set relevant part of first half of WORK to zero,
  357. * holds dot products
  358. *
  359. DO 170 I = K, N
  360. WORK( I ) = 0
  361. 170 CONTINUE
  362. *
  363. DO 200 J = K, K + JB - 1
  364. *
  365. * Find pivot, test for exit, else swap rows and columns
  366. * Update dot products, compute possible pivots which are
  367. * stored in the second half of WORK
  368. *
  369. DO 180 I = J, N
  370. *
  371. IF( J.GT.K ) THEN
  372. WORK( I ) = WORK( I ) +
  373. $ REAL( CONJG( A( I, J-1 ) )*
  374. $ A( I, J-1 ) )
  375. END IF
  376. WORK( N+I ) = REAL( A( I, I ) ) - WORK( I )
  377. *
  378. 180 CONTINUE
  379. *
  380. IF( J.GT.1 ) THEN
  381. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  382. PVT = ITEMP + J - 1
  383. AJJ = WORK( N+PVT )
  384. IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
  385. A( J, J ) = AJJ
  386. GO TO 220
  387. END IF
  388. END IF
  389. *
  390. IF( J.NE.PVT ) THEN
  391. *
  392. * Pivot OK, so can now swap pivot rows and columns
  393. *
  394. A( PVT, PVT ) = A( J, J )
  395. CALL CSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  396. IF( PVT.LT.N )
  397. $ CALL CSWAP( N-PVT, A( PVT+1, J ), 1,
  398. $ A( PVT+1, PVT ), 1 )
  399. DO 190 I = J + 1, PVT - 1
  400. CTEMP = CONJG( A( I, J ) )
  401. A( I, J ) = CONJG( A( PVT, I ) )
  402. A( PVT, I ) = CTEMP
  403. 190 CONTINUE
  404. A( PVT, J ) = CONJG( A( PVT, J ) )
  405. *
  406. * Swap dot products and PIV
  407. *
  408. STEMP = WORK( J )
  409. WORK( J ) = WORK( PVT )
  410. WORK( PVT ) = STEMP
  411. ITEMP = PIV( PVT )
  412. PIV( PVT ) = PIV( J )
  413. PIV( J ) = ITEMP
  414. END IF
  415. *
  416. AJJ = SQRT( AJJ )
  417. A( J, J ) = AJJ
  418. *
  419. * Compute elements J+1:N of column J.
  420. *
  421. IF( J.LT.N ) THEN
  422. CALL CLACGV( J-1, A( J, 1 ), LDA )
  423. CALL CGEMV( 'No Trans', N-J, J-K, -CONE,
  424. $ A( J+1, K ), LDA, A( J, K ), LDA, CONE,
  425. $ A( J+1, J ), 1 )
  426. CALL CLACGV( J-1, A( J, 1 ), LDA )
  427. CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  428. END IF
  429. *
  430. 200 CONTINUE
  431. *
  432. * Update trailing matrix, J already incremented
  433. *
  434. IF( K+JB.LE.N ) THEN
  435. CALL CHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  436. $ A( J, K ), LDA, ONE, A( J, J ), LDA )
  437. END IF
  438. *
  439. 210 CONTINUE
  440. *
  441. END IF
  442. END IF
  443. *
  444. * Ran to completion, A has full rank
  445. *
  446. RANK = N
  447. *
  448. GO TO 230
  449. 220 CONTINUE
  450. *
  451. * Rank is the number of steps completed. Set INFO = 1 to signal
  452. * that the factorization cannot be used to solve a system.
  453. *
  454. RANK = J - 1
  455. INFO = 1
  456. *
  457. 230 CONTINUE
  458. RETURN
  459. *
  460. * End of CPSTRF
  461. *
  462. END