You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chptrd.f 9.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. *> \brief \b CHPTRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHPTRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHPTRD( UPLO, N, AP, D, E, TAU, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL D( * ), E( * )
  29. * COMPLEX AP( * ), TAU( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CHPTRD reduces a complex Hermitian matrix A stored in packed form to
  39. *> real symmetric tridiagonal form T by a unitary similarity
  40. *> transformation: Q**H * A * Q = T.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> = 'U': Upper triangle of A is stored;
  50. *> = 'L': Lower triangle of A is stored.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The order of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in,out] AP
  60. *> \verbatim
  61. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  62. *> On entry, the upper or lower triangle of the Hermitian matrix
  63. *> A, packed columnwise in a linear array. The j-th column of A
  64. *> is stored in the array AP as follows:
  65. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  66. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  67. *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
  68. *> of A are overwritten by the corresponding elements of the
  69. *> tridiagonal matrix T, and the elements above the first
  70. *> superdiagonal, with the array TAU, represent the unitary
  71. *> matrix Q as a product of elementary reflectors; if UPLO
  72. *> = 'L', the diagonal and first subdiagonal of A are over-
  73. *> written by the corresponding elements of the tridiagonal
  74. *> matrix T, and the elements below the first subdiagonal, with
  75. *> the array TAU, represent the unitary matrix Q as a product
  76. *> of elementary reflectors. See Further Details.
  77. *> \endverbatim
  78. *>
  79. *> \param[out] D
  80. *> \verbatim
  81. *> D is REAL array, dimension (N)
  82. *> The diagonal elements of the tridiagonal matrix T:
  83. *> D(i) = A(i,i).
  84. *> \endverbatim
  85. *>
  86. *> \param[out] E
  87. *> \verbatim
  88. *> E is REAL array, dimension (N-1)
  89. *> The off-diagonal elements of the tridiagonal matrix T:
  90. *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] TAU
  94. *> \verbatim
  95. *> TAU is COMPLEX array, dimension (N-1)
  96. *> The scalar factors of the elementary reflectors (see Further
  97. *> Details).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] INFO
  101. *> \verbatim
  102. *> INFO is INTEGER
  103. *> = 0: successful exit
  104. *> < 0: if INFO = -i, the i-th argument had an illegal value
  105. *> \endverbatim
  106. *
  107. * Authors:
  108. * ========
  109. *
  110. *> \author Univ. of Tennessee
  111. *> \author Univ. of California Berkeley
  112. *> \author Univ. of Colorado Denver
  113. *> \author NAG Ltd.
  114. *
  115. *> \date November 2011
  116. *
  117. *> \ingroup complexOTHERcomputational
  118. *
  119. *> \par Further Details:
  120. * =====================
  121. *>
  122. *> \verbatim
  123. *>
  124. *> If UPLO = 'U', the matrix Q is represented as a product of elementary
  125. *> reflectors
  126. *>
  127. *> Q = H(n-1) . . . H(2) H(1).
  128. *>
  129. *> Each H(i) has the form
  130. *>
  131. *> H(i) = I - tau * v * v**H
  132. *>
  133. *> where tau is a complex scalar, and v is a complex vector with
  134. *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
  135. *> overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
  136. *>
  137. *> If UPLO = 'L', the matrix Q is represented as a product of elementary
  138. *> reflectors
  139. *>
  140. *> Q = H(1) H(2) . . . H(n-1).
  141. *>
  142. *> Each H(i) has the form
  143. *>
  144. *> H(i) = I - tau * v * v**H
  145. *>
  146. *> where tau is a complex scalar, and v is a complex vector with
  147. *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
  148. *> overwriting A(i+2:n,i), and tau is stored in TAU(i).
  149. *> \endverbatim
  150. *>
  151. * =====================================================================
  152. SUBROUTINE CHPTRD( UPLO, N, AP, D, E, TAU, INFO )
  153. *
  154. * -- LAPACK computational routine (version 3.4.0) --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. * November 2011
  158. *
  159. * .. Scalar Arguments ..
  160. CHARACTER UPLO
  161. INTEGER INFO, N
  162. * ..
  163. * .. Array Arguments ..
  164. REAL D( * ), E( * )
  165. COMPLEX AP( * ), TAU( * )
  166. * ..
  167. *
  168. * =====================================================================
  169. *
  170. * .. Parameters ..
  171. COMPLEX ONE, ZERO, HALF
  172. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
  173. $ ZERO = ( 0.0E+0, 0.0E+0 ),
  174. $ HALF = ( 0.5E+0, 0.0E+0 ) )
  175. * ..
  176. * .. Local Scalars ..
  177. LOGICAL UPPER
  178. INTEGER I, I1, I1I1, II
  179. COMPLEX ALPHA, TAUI
  180. * ..
  181. * .. External Subroutines ..
  182. EXTERNAL CAXPY, CHPMV, CHPR2, CLARFG, XERBLA
  183. * ..
  184. * .. External Functions ..
  185. LOGICAL LSAME
  186. COMPLEX CDOTC
  187. EXTERNAL LSAME, CDOTC
  188. * ..
  189. * .. Intrinsic Functions ..
  190. INTRINSIC REAL
  191. * ..
  192. * .. Executable Statements ..
  193. *
  194. * Test the input parameters
  195. *
  196. INFO = 0
  197. UPPER = LSAME( UPLO, 'U' )
  198. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  199. INFO = -1
  200. ELSE IF( N.LT.0 ) THEN
  201. INFO = -2
  202. END IF
  203. IF( INFO.NE.0 ) THEN
  204. CALL XERBLA( 'CHPTRD', -INFO )
  205. RETURN
  206. END IF
  207. *
  208. * Quick return if possible
  209. *
  210. IF( N.LE.0 )
  211. $ RETURN
  212. *
  213. IF( UPPER ) THEN
  214. *
  215. * Reduce the upper triangle of A.
  216. * I1 is the index in AP of A(1,I+1).
  217. *
  218. I1 = N*( N-1 ) / 2 + 1
  219. AP( I1+N-1 ) = REAL( AP( I1+N-1 ) )
  220. DO 10 I = N - 1, 1, -1
  221. *
  222. * Generate elementary reflector H(i) = I - tau * v * v**H
  223. * to annihilate A(1:i-1,i+1)
  224. *
  225. ALPHA = AP( I1+I-1 )
  226. CALL CLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
  227. E( I ) = ALPHA
  228. *
  229. IF( TAUI.NE.ZERO ) THEN
  230. *
  231. * Apply H(i) from both sides to A(1:i,1:i)
  232. *
  233. AP( I1+I-1 ) = ONE
  234. *
  235. * Compute y := tau * A * v storing y in TAU(1:i)
  236. *
  237. CALL CHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
  238. $ 1 )
  239. *
  240. * Compute w := y - 1/2 * tau * (y**H *v) * v
  241. *
  242. ALPHA = -HALF*TAUI*CDOTC( I, TAU, 1, AP( I1 ), 1 )
  243. CALL CAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
  244. *
  245. * Apply the transformation as a rank-2 update:
  246. * A := A - v * w**H - w * v**H
  247. *
  248. CALL CHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
  249. *
  250. END IF
  251. AP( I1+I-1 ) = E( I )
  252. D( I+1 ) = AP( I1+I )
  253. TAU( I ) = TAUI
  254. I1 = I1 - I
  255. 10 CONTINUE
  256. D( 1 ) = AP( 1 )
  257. ELSE
  258. *
  259. * Reduce the lower triangle of A. II is the index in AP of
  260. * A(i,i) and I1I1 is the index of A(i+1,i+1).
  261. *
  262. II = 1
  263. AP( 1 ) = REAL( AP( 1 ) )
  264. DO 20 I = 1, N - 1
  265. I1I1 = II + N - I + 1
  266. *
  267. * Generate elementary reflector H(i) = I - tau * v * v**H
  268. * to annihilate A(i+2:n,i)
  269. *
  270. ALPHA = AP( II+1 )
  271. CALL CLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
  272. E( I ) = ALPHA
  273. *
  274. IF( TAUI.NE.ZERO ) THEN
  275. *
  276. * Apply H(i) from both sides to A(i+1:n,i+1:n)
  277. *
  278. AP( II+1 ) = ONE
  279. *
  280. * Compute y := tau * A * v storing y in TAU(i:n-1)
  281. *
  282. CALL CHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
  283. $ ZERO, TAU( I ), 1 )
  284. *
  285. * Compute w := y - 1/2 * tau * (y**H *v) * v
  286. *
  287. ALPHA = -HALF*TAUI*CDOTC( N-I, TAU( I ), 1, AP( II+1 ),
  288. $ 1 )
  289. CALL CAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
  290. *
  291. * Apply the transformation as a rank-2 update:
  292. * A := A - v * w**H - w * v**H
  293. *
  294. CALL CHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
  295. $ AP( I1I1 ) )
  296. *
  297. END IF
  298. AP( II+1 ) = E( I )
  299. D( I ) = AP( II )
  300. TAU( I ) = TAUI
  301. II = I1I1
  302. 20 CONTINUE
  303. D( N ) = AP( II )
  304. END IF
  305. *
  306. RETURN
  307. *
  308. * End of CHPTRD
  309. *
  310. END