You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlauumf.f 5.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. SUBROUTINE ZLAUUMF( UPLO, N, A, LDA, INFO )
  2. *
  3. * -- LAPACK auxiliary routine (version 3.0) --
  4. * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
  5. * Courant Institute, Argonne National Lab, and Rice University
  6. * September 30, 1994
  7. *
  8. * .. Scalar Arguments ..
  9. CHARACTER UPLO
  10. INTEGER INFO, LDA, N
  11. * ..
  12. * .. Array Arguments ..
  13. COMPLEX*16 A( LDA, * )
  14. * ..
  15. *
  16. * Purpose
  17. * =======
  18. *
  19. * ZLAUUM computes the product U * U' or L' * L, where the triangular
  20. * factor U or L is stored in the upper or lower triangular part of
  21. * the array A.
  22. *
  23. * If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
  24. * overwriting the factor U in A.
  25. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
  26. * overwriting the factor L in A.
  27. *
  28. * This is the blocked form of the algorithm, calling Level 3 BLAS.
  29. *
  30. * Arguments
  31. * =========
  32. *
  33. * UPLO (input) CHARACTER*1
  34. * Specifies whether the triangular factor stored in the array A
  35. * is upper or lower triangular:
  36. * = 'U': Upper triangular
  37. * = 'L': Lower triangular
  38. *
  39. * N (input) INTEGER
  40. * The order of the triangular factor U or L. N >= 0.
  41. *
  42. * A (input/output) COMPLEX*16 array, dimension (LDA,N)
  43. * On entry, the triangular factor U or L.
  44. * On exit, if UPLO = 'U', the upper triangle of A is
  45. * overwritten with the upper triangle of the product U * U';
  46. * if UPLO = 'L', the lower triangle of A is overwritten with
  47. * the lower triangle of the product L' * L.
  48. *
  49. * LDA (input) INTEGER
  50. * The leading dimension of the array A. LDA >= max(1,N).
  51. *
  52. * INFO (output) INTEGER
  53. * = 0: successful exit
  54. * < 0: if INFO = -k, the k-th argument had an illegal value
  55. *
  56. * =====================================================================
  57. *
  58. * .. Parameters ..
  59. DOUBLE PRECISION ONE
  60. PARAMETER ( ONE = 1.0D+0 )
  61. COMPLEX*16 CONE
  62. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  63. * ..
  64. * .. Local Scalars ..
  65. LOGICAL UPPER
  66. INTEGER I, IB, NB
  67. * ..
  68. * .. External Functions ..
  69. LOGICAL LSAME
  70. EXTERNAL LSAME
  71. * ..
  72. * .. External Subroutines ..
  73. EXTERNAL XERBLA, ZGEMM, ZHERK, ZLAUU2, ZTRMM
  74. * ..
  75. * .. Intrinsic Functions ..
  76. INTRINSIC MAX, MIN
  77. * ..
  78. * .. Executable Statements ..
  79. *
  80. * Test the input parameters.
  81. *
  82. INFO = 0
  83. UPPER = LSAME( UPLO, 'U' )
  84. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  85. INFO = -1
  86. ELSE IF( N.LT.0 ) THEN
  87. INFO = -2
  88. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  89. INFO = -4
  90. END IF
  91. IF( INFO.NE.0 ) THEN
  92. CALL XERBLA( 'ZLAUUM', -INFO )
  93. RETURN
  94. END IF
  95. *
  96. * Quick return if possible
  97. *
  98. IF( N.EQ.0 )
  99. $ RETURN
  100. *
  101. * Determine the block size for this environment.
  102. *
  103. NB = 128
  104. *
  105. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  106. *
  107. * Use unblocked code
  108. *
  109. CALL ZLAUU2( UPLO, N, A, LDA, INFO )
  110. ELSE
  111. *
  112. * Use blocked code
  113. *
  114. IF( UPPER ) THEN
  115. *
  116. * Compute the product U * U'.
  117. *
  118. DO 10 I = 1, N, NB
  119. IB = MIN( NB, N-I+1 )
  120. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  121. $ 'Non-unit', I-1, IB, CONE, A( I, I ), LDA,
  122. $ A( 1, I ), LDA )
  123. CALL ZLAUU2( 'Upper', IB, A( I, I ), LDA, INFO )
  124. IF( I+IB.LE.N ) THEN
  125. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  126. $ I-1, IB, N-I-IB+1, CONE, A( 1, I+IB ),
  127. $ LDA, A( I, I+IB ), LDA, CONE, A( 1, I ),
  128. $ LDA )
  129. CALL ZHERK( 'Upper', 'No transpose', IB, N-I-IB+1,
  130. $ ONE, A( I, I+IB ), LDA, ONE, A( I, I ),
  131. $ LDA )
  132. END IF
  133. 10 CONTINUE
  134. ELSE
  135. *
  136. * Compute the product L' * L.
  137. *
  138. DO 20 I = 1, N, NB
  139. IB = MIN( NB, N-I+1 )
  140. CALL ZTRMM( 'Left', 'Lower', 'Conjugate transpose',
  141. $ 'Non-unit', IB, I-1, CONE, A( I, I ), LDA,
  142. $ A( I, 1 ), LDA )
  143. CALL ZLAUU2( 'Lower', IB, A( I, I ), LDA, INFO )
  144. IF( I+IB.LE.N ) THEN
  145. CALL ZGEMM( 'Conjugate transpose', 'No transpose', IB,
  146. $ I-1, N-I-IB+1, CONE, A( I+IB, I ), LDA,
  147. $ A( I+IB, 1 ), LDA, CONE, A( I, 1 ), LDA )
  148. CALL ZHERK( 'Lower', 'Conjugate transpose', IB,
  149. $ N-I-IB+1, ONE, A( I+IB, I ), LDA, ONE,
  150. $ A( I, I ), LDA )
  151. END IF
  152. 20 CONTINUE
  153. END IF
  154. END IF
  155. *
  156. RETURN
  157. *
  158. * End of ZLAUUM
  159. *
  160. END