You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgetf2f.f 3.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. SUBROUTINE SGETF2F( M, N, A, LDA, IPIV, INFO )
  2. *
  3. * -- LAPACK routine (version 3.0) --
  4. * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
  5. * Courant Institute, Argonne National Lab, and Rice University
  6. * June 30, 1992
  7. *
  8. * .. Scalar Arguments ..
  9. INTEGER INFO, LDA, M, N
  10. * ..
  11. * .. Array Arguments ..
  12. INTEGER IPIV( * )
  13. REAL A( LDA, * )
  14. * ..
  15. *
  16. * Purpose
  17. * =======
  18. *
  19. * SGETF2 computes an LU factorization of a general m-by-n matrix A
  20. * using partial pivoting with row interchanges.
  21. *
  22. * The factorization has the form
  23. * A = P * L * U
  24. * where P is a permutation matrix, L is lower triangular with unit
  25. * diagonal elements (lower trapezoidal if m > n), and U is upper
  26. * triangular (upper trapezoidal if m < n).
  27. *
  28. * This is the right-looking Level 2 BLAS version of the algorithm.
  29. *
  30. * Arguments
  31. * =========
  32. *
  33. * M (input) INTEGER
  34. * The number of rows of the matrix A. M >= 0.
  35. *
  36. * N (input) INTEGER
  37. * The number of columns of the matrix A. N >= 0.
  38. *
  39. * A (input/output) REAL array, dimension (LDA,N)
  40. * On entry, the m by n matrix to be factored.
  41. * On exit, the factors L and U from the factorization
  42. * A = P*L*U; the unit diagonal elements of L are not stored.
  43. *
  44. * LDA (input) INTEGER
  45. * The leading dimension of the array A. LDA >= max(1,M).
  46. *
  47. * IPIV (output) INTEGER array, dimension (min(M,N))
  48. * The pivot indices; for 1 <= i <= min(M,N), row i of the
  49. * matrix was interchanged with row IPIV(i).
  50. *
  51. * INFO (output) INTEGER
  52. * = 0: successful exit
  53. * < 0: if INFO = -k, the k-th argument had an illegal value
  54. * > 0: if INFO = k, U(k,k) is exactly zero. The factorization
  55. * has been completed, but the factor U is exactly
  56. * singular, and division by zero will occur if it is used
  57. * to solve a system of equations.
  58. *
  59. * =====================================================================
  60. *
  61. * .. Parameters ..
  62. REAL ONE, ZERO
  63. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  64. * ..
  65. * .. Local Scalars ..
  66. INTEGER J, JP
  67. * ..
  68. * .. External Functions ..
  69. INTEGER ISAMAX
  70. EXTERNAL ISAMAX
  71. * ..
  72. * .. External Subroutines ..
  73. EXTERNAL SGER, SSCAL, SSWAP, XERBLA
  74. * ..
  75. * .. Intrinsic Functions ..
  76. INTRINSIC MAX, MIN
  77. * ..
  78. * .. Executable Statements ..
  79. *
  80. * Test the input parameters.
  81. *
  82. INFO = 0
  83. IF( M.LT.0 ) THEN
  84. INFO = -1
  85. ELSE IF( N.LT.0 ) THEN
  86. INFO = -2
  87. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  88. INFO = -4
  89. END IF
  90. IF( INFO.NE.0 ) THEN
  91. CALL XERBLA( 'SGETF2', -INFO )
  92. RETURN
  93. END IF
  94. *
  95. * Quick return if possible
  96. *
  97. IF( M.EQ.0 .OR. N.EQ.0 )
  98. $ RETURN
  99. *
  100. DO 10 J = 1, MIN( M, N )
  101. *
  102. * Find pivot and test for singularity.
  103. *
  104. JP = J - 1 + ISAMAX( M-J+1, A( J, J ), 1 )
  105. IPIV( J ) = JP
  106. IF( A( JP, J ).NE.ZERO ) THEN
  107. *
  108. * Apply the interchange to columns 1:N.
  109. *
  110. IF( JP.NE.J )
  111. $ CALL SSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
  112. *
  113. * Compute elements J+1:M of J-th column.
  114. *
  115. IF( J.LT.M )
  116. $ CALL SSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
  117. *
  118. ELSE IF( INFO.EQ.0 ) THEN
  119. *
  120. INFO = J
  121. END IF
  122. *
  123. IF( J.LT.MIN( M, N ) ) THEN
  124. *
  125. * Update trailing submatrix.
  126. *
  127. CALL SGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
  128. $ A( J+1, J+1 ), LDA )
  129. END IF
  130. 10 CONTINUE
  131. RETURN
  132. *
  133. * End of SGETF2
  134. *
  135. END