You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlamtsqr.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. *
  2. * Definition:
  3. * ===========
  4. *
  5. * SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  6. * $ LDT, C, LDC, WORK, LWORK, INFO )
  7. *
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER SIDE, TRANS
  11. * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
  15. * $ T( LDT, * )
  16. *> \par Purpose:
  17. * =============
  18. *>
  19. *> \verbatim
  20. *>
  21. *> ZLAMTSQR overwrites the general complex M-by-N matrix C with
  22. *>
  23. *>
  24. *> SIDE = 'L' SIDE = 'R'
  25. *> TRANS = 'N': Q * C C * Q
  26. *> TRANS = 'C': Q**H * C C * Q**H
  27. *> where Q is a real orthogonal matrix defined as the product
  28. *> of blocked elementary reflectors computed by tall skinny
  29. *> QR factorization (ZLATSQR)
  30. *> \endverbatim
  31. *
  32. * Arguments:
  33. * ==========
  34. *
  35. *> \param[in] SIDE
  36. *> \verbatim
  37. *> SIDE is CHARACTER*1
  38. *> = 'L': apply Q or Q**H from the Left;
  39. *> = 'R': apply Q or Q**H from the Right.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] TRANS
  43. *> \verbatim
  44. *> TRANS is CHARACTER*1
  45. *> = 'N': No transpose, apply Q;
  46. *> = 'C': Conjugate Transpose, apply Q**H.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] M
  50. *> \verbatim
  51. *> M is INTEGER
  52. *> The number of rows of the matrix A. M >=0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of columns of the matrix C. M >= N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] K
  62. *> \verbatim
  63. *> K is INTEGER
  64. *> The number of elementary reflectors whose product defines
  65. *> the matrix Q.
  66. *> N >= K >= 0;
  67. *>
  68. *> \endverbatim
  69. *>
  70. *> \param[in] MB
  71. *> \verbatim
  72. *> MB is INTEGER
  73. *> The block size to be used in the blocked QR.
  74. *> MB > N. (must be the same as DLATSQR)
  75. *> \endverbatim
  76. *>
  77. *> \param[in] NB
  78. *> \verbatim
  79. *> NB is INTEGER
  80. *> The column block size to be used in the blocked QR.
  81. *> N >= NB >= 1.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] A
  85. *> \verbatim
  86. *> A is COMPLEX*16 array, dimension (LDA,K)
  87. *> The i-th column must contain the vector which defines the
  88. *> blockedelementary reflector H(i), for i = 1,2,...,k, as
  89. *> returned by DLATSQR in the first k columns of
  90. *> its array argument A.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of the array A.
  97. *> If SIDE = 'L', LDA >= max(1,M);
  98. *> if SIDE = 'R', LDA >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] T
  102. *> \verbatim
  103. *> T is COMPLEX*16 array, dimension
  104. *> ( N * Number of blocks(CEIL(M-K/MB-K)),
  105. *> The blocked upper triangular block reflectors stored in compact form
  106. *> as a sequence of upper triangular blocks. See below
  107. *> for further details.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDT
  111. *> \verbatim
  112. *> LDT is INTEGER
  113. *> The leading dimension of the array T. LDT >= NB.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] C
  117. *> \verbatim
  118. *> C is COMPLEX*16 array, dimension (LDC,N)
  119. *> On entry, the M-by-N matrix C.
  120. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDC
  124. *> \verbatim
  125. *> LDC is INTEGER
  126. *> The leading dimension of the array C. LDC >= max(1,M).
  127. *> \endverbatim
  128. *>
  129. *> \param[out] WORK
  130. *> \verbatim
  131. *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  132. *>
  133. *> \endverbatim
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *>
  139. *> If SIDE = 'L', LWORK >= max(1,N)*NB;
  140. *> if SIDE = 'R', LWORK >= max(1,MB)*NB.
  141. *> If LWORK = -1, then a workspace query is assumed; the routine
  142. *> only calculates the optimal size of the WORK array, returns
  143. *> this value as the first entry of the WORK array, and no error
  144. *> message related to LWORK is issued by XERBLA.
  145. *>
  146. *> \endverbatim
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \par Further Details:
  163. * =====================
  164. *>
  165. *> \verbatim
  166. *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
  167. *> representing Q as a product of other orthogonal matrices
  168. *> Q = Q(1) * Q(2) * . . . * Q(k)
  169. *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
  170. *> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
  171. *> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
  172. *> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
  173. *> . . .
  174. *>
  175. *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
  176. *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  177. *> block reflectors, stored in array T(1:LDT,1:N).
  178. *> For more information see Further Details in GEQRT.
  179. *>
  180. *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
  181. *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
  182. *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
  183. *> The last Q(k) may use fewer rows.
  184. *> For more information see Further Details in TPQRT.
  185. *>
  186. *> For more details of the overall algorithm, see the description of
  187. *> Sequential TSQR in Section 2.2 of [1].
  188. *>
  189. *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  190. *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  191. *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  196. $ LDT, C, LDC, WORK, LWORK, INFO )
  197. *
  198. * -- LAPACK computational routine (version 3.7.1) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * June 2017
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER SIDE, TRANS
  205. INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  206. * ..
  207. * .. Array Arguments ..
  208. COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
  209. $ T( LDT, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * ..
  215. * .. Local Scalars ..
  216. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  217. INTEGER I, II, KK, LW, CTR
  218. * ..
  219. * .. External Functions ..
  220. LOGICAL LSAME
  221. EXTERNAL LSAME
  222. * .. External Subroutines ..
  223. EXTERNAL ZGEMQRT, ZTPMQRT, XERBLA
  224. * ..
  225. * .. Executable Statements ..
  226. *
  227. * Test the input arguments
  228. *
  229. LQUERY = LWORK.LT.0
  230. NOTRAN = LSAME( TRANS, 'N' )
  231. TRAN = LSAME( TRANS, 'C' )
  232. LEFT = LSAME( SIDE, 'L' )
  233. RIGHT = LSAME( SIDE, 'R' )
  234. IF (LEFT) THEN
  235. LW = N * NB
  236. ELSE
  237. LW = M * NB
  238. END IF
  239. *
  240. INFO = 0
  241. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  242. INFO = -1
  243. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  244. INFO = -2
  245. ELSE IF( M.LT.0 ) THEN
  246. INFO = -3
  247. ELSE IF( N.LT.0 ) THEN
  248. INFO = -4
  249. ELSE IF( K.LT.0 ) THEN
  250. INFO = -5
  251. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  252. INFO = -9
  253. ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
  254. INFO = -11
  255. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  256. INFO = -13
  257. ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  258. INFO = -15
  259. END IF
  260. *
  261. * Determine the block size if it is tall skinny or short and wide
  262. *
  263. IF( INFO.EQ.0) THEN
  264. WORK(1) = LW
  265. END IF
  266. *
  267. IF( INFO.NE.0 ) THEN
  268. CALL XERBLA( 'ZLAMTSQR', -INFO )
  269. RETURN
  270. ELSE IF (LQUERY) THEN
  271. RETURN
  272. END IF
  273. *
  274. * Quick return if possible
  275. *
  276. IF( MIN(M,N,K).EQ.0 ) THEN
  277. RETURN
  278. END IF
  279. *
  280. IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
  281. CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
  282. $ T, LDT, C, LDC, WORK, INFO)
  283. RETURN
  284. END IF
  285. *
  286. IF(LEFT.AND.NOTRAN) THEN
  287. *
  288. * Multiply Q to the last block of C
  289. *
  290. KK = MOD((M-K),(MB-K))
  291. CTR = (M-K)/(MB-K)
  292. IF (KK.GT.0) THEN
  293. II=M-KK+1
  294. CALL ZTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
  295. $ T(1, CTR * K + 1),LDT , C(1,1), LDC,
  296. $ C(II,1), LDC, WORK, INFO )
  297. ELSE
  298. II=M+1
  299. END IF
  300. *
  301. DO I=II-(MB-K),MB+1,-(MB-K)
  302. *
  303. * Multiply Q to the current block of C (I:I+MB,1:N)
  304. *
  305. CTR = CTR - 1
  306. CALL ZTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
  307. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  308. $ C(I,1), LDC, WORK, INFO )
  309. END DO
  310. *
  311. * Multiply Q to the first block of C (1:MB,1:N)
  312. *
  313. CALL ZGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
  314. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  315. *
  316. ELSE IF (LEFT.AND.TRAN) THEN
  317. *
  318. * Multiply Q to the first block of C
  319. *
  320. KK = MOD((M-K),(MB-K))
  321. II=M-KK+1
  322. CTR = 1
  323. CALL ZGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
  324. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  325. *
  326. DO I=MB+1,II-MB+K,(MB-K)
  327. *
  328. * Multiply Q to the current block of C (I:I+MB,1:N)
  329. *
  330. CALL ZTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
  331. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  332. $ C(I,1), LDC, WORK, INFO )
  333. CTR = CTR + 1
  334. *
  335. END DO
  336. IF(II.LE.M) THEN
  337. *
  338. * Multiply Q to the last block of C
  339. *
  340. CALL ZTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
  341. $ T(1, CTR * K + 1), LDT, C(1,1), LDC,
  342. $ C(II,1), LDC, WORK, INFO )
  343. *
  344. END IF
  345. *
  346. ELSE IF(RIGHT.AND.TRAN) THEN
  347. *
  348. * Multiply Q to the last block of C
  349. *
  350. KK = MOD((N-K),(MB-K))
  351. CTR = (N-K)/(MB-K)
  352. IF (KK.GT.0) THEN
  353. II=N-KK+1
  354. CALL ZTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
  355. $ T(1,CTR * K + 1), LDT, C(1,1), LDC,
  356. $ C(1,II), LDC, WORK, INFO )
  357. ELSE
  358. II=N+1
  359. END IF
  360. *
  361. DO I=II-(MB-K),MB+1,-(MB-K)
  362. *
  363. * Multiply Q to the current block of C (1:M,I:I+MB)
  364. *
  365. CTR = CTR - 1
  366. CALL ZTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
  367. $ T(1, CTR * K + 1), LDT, C(1,1), LDC,
  368. $ C(1,I), LDC, WORK, INFO )
  369. END DO
  370. *
  371. * Multiply Q to the first block of C (1:M,1:MB)
  372. *
  373. CALL ZGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
  374. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  375. *
  376. ELSE IF (RIGHT.AND.NOTRAN) THEN
  377. *
  378. * Multiply Q to the first block of C
  379. *
  380. KK = MOD((N-K),(MB-K))
  381. II=N-KK+1
  382. CTR = 1
  383. CALL ZGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
  384. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  385. *
  386. DO I=MB+1,II-MB+K,(MB-K)
  387. *
  388. * Multiply Q to the current block of C (1:M,I:I+MB)
  389. *
  390. CALL ZTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
  391. $ T(1, CTR * K + 1),LDT, C(1,1), LDC,
  392. $ C(1,I), LDC, WORK, INFO )
  393. CTR = CTR + 1
  394. *
  395. END DO
  396. IF(II.LE.N) THEN
  397. *
  398. * Multiply Q to the last block of C
  399. *
  400. CALL ZTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
  401. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  402. $ C(1,II), LDC, WORK, INFO )
  403. *
  404. END IF
  405. *
  406. END IF
  407. *
  408. WORK(1) = LW
  409. RETURN
  410. *
  411. * End of ZLAMTSQR
  412. *
  413. END