You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slantr.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. *> \brief \b SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER LDA, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLANTR returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> trapezoidal or triangular matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return SLANTR
  44. *> \verbatim
  45. *>
  46. *> SLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in SLANTR as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the matrix A is upper or lower trapezoidal.
  74. *> = 'U': Upper trapezoidal
  75. *> = 'L': Lower trapezoidal
  76. *> Note that A is triangular instead of trapezoidal if M = N.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] DIAG
  80. *> \verbatim
  81. *> DIAG is CHARACTER*1
  82. *> Specifies whether or not the matrix A has unit diagonal.
  83. *> = 'N': Non-unit diagonal
  84. *> = 'U': Unit diagonal
  85. *> \endverbatim
  86. *>
  87. *> \param[in] M
  88. *> \verbatim
  89. *> M is INTEGER
  90. *> The number of rows of the matrix A. M >= 0, and if
  91. *> UPLO = 'U', M <= N. When M = 0, SLANTR is set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] N
  95. *> \verbatim
  96. *> N is INTEGER
  97. *> The number of columns of the matrix A. N >= 0, and if
  98. *> UPLO = 'L', N <= M. When N = 0, SLANTR is set to zero.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] A
  102. *> \verbatim
  103. *> A is REAL array, dimension (LDA,N)
  104. *> The trapezoidal matrix A (A is triangular if M = N).
  105. *> If UPLO = 'U', the leading m by n upper trapezoidal part of
  106. *> the array A contains the upper trapezoidal matrix, and the
  107. *> strictly lower triangular part of A is not referenced.
  108. *> If UPLO = 'L', the leading m by n lower trapezoidal part of
  109. *> the array A contains the lower trapezoidal matrix, and the
  110. *> strictly upper triangular part of A is not referenced. Note
  111. *> that when DIAG = 'U', the diagonal elements of A are not
  112. *> referenced and are assumed to be one.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of the array A. LDA >= max(M,1).
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  124. *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  125. *> referenced.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date December 2016
  137. *
  138. *> \ingroup realOTHERauxiliary
  139. *
  140. * =====================================================================
  141. REAL FUNCTION SLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  142. $ WORK )
  143. *
  144. * -- LAPACK auxiliary routine (version 3.7.0) --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. * December 2016
  148. *
  149. * .. Scalar Arguments ..
  150. CHARACTER DIAG, NORM, UPLO
  151. INTEGER LDA, M, N
  152. * ..
  153. * .. Array Arguments ..
  154. REAL A( LDA, * ), WORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Parameters ..
  160. REAL ONE, ZERO
  161. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  162. * ..
  163. * .. Local Scalars ..
  164. LOGICAL UDIAG
  165. INTEGER I, J
  166. REAL SCALE, SUM, VALUE
  167. * ..
  168. * .. External Subroutines ..
  169. EXTERNAL SLASSQ
  170. * ..
  171. * .. External Functions ..
  172. LOGICAL LSAME, SISNAN
  173. EXTERNAL LSAME, SISNAN
  174. * ..
  175. * .. Intrinsic Functions ..
  176. INTRINSIC ABS, MIN, SQRT
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. IF( MIN( M, N ).EQ.0 ) THEN
  181. VALUE = ZERO
  182. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  183. *
  184. * Find max(abs(A(i,j))).
  185. *
  186. IF( LSAME( DIAG, 'U' ) ) THEN
  187. VALUE = ONE
  188. IF( LSAME( UPLO, 'U' ) ) THEN
  189. DO 20 J = 1, N
  190. DO 10 I = 1, MIN( M, J-1 )
  191. SUM = ABS( A( I, J ) )
  192. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  193. 10 CONTINUE
  194. 20 CONTINUE
  195. ELSE
  196. DO 40 J = 1, N
  197. DO 30 I = J + 1, M
  198. SUM = ABS( A( I, J ) )
  199. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  200. 30 CONTINUE
  201. 40 CONTINUE
  202. END IF
  203. ELSE
  204. VALUE = ZERO
  205. IF( LSAME( UPLO, 'U' ) ) THEN
  206. DO 60 J = 1, N
  207. DO 50 I = 1, MIN( M, J )
  208. SUM = ABS( A( I, J ) )
  209. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  210. 50 CONTINUE
  211. 60 CONTINUE
  212. ELSE
  213. DO 80 J = 1, N
  214. DO 70 I = J, M
  215. SUM = ABS( A( I, J ) )
  216. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  217. 70 CONTINUE
  218. 80 CONTINUE
  219. END IF
  220. END IF
  221. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  222. *
  223. * Find norm1(A).
  224. *
  225. VALUE = ZERO
  226. UDIAG = LSAME( DIAG, 'U' )
  227. IF( LSAME( UPLO, 'U' ) ) THEN
  228. DO 110 J = 1, N
  229. IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  230. SUM = ONE
  231. DO 90 I = 1, J - 1
  232. SUM = SUM + ABS( A( I, J ) )
  233. 90 CONTINUE
  234. ELSE
  235. SUM = ZERO
  236. DO 100 I = 1, MIN( M, J )
  237. SUM = SUM + ABS( A( I, J ) )
  238. 100 CONTINUE
  239. END IF
  240. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  241. 110 CONTINUE
  242. ELSE
  243. DO 140 J = 1, N
  244. IF( UDIAG ) THEN
  245. SUM = ONE
  246. DO 120 I = J + 1, M
  247. SUM = SUM + ABS( A( I, J ) )
  248. 120 CONTINUE
  249. ELSE
  250. SUM = ZERO
  251. DO 130 I = J, M
  252. SUM = SUM + ABS( A( I, J ) )
  253. 130 CONTINUE
  254. END IF
  255. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  256. 140 CONTINUE
  257. END IF
  258. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  259. *
  260. * Find normI(A).
  261. *
  262. IF( LSAME( UPLO, 'U' ) ) THEN
  263. IF( LSAME( DIAG, 'U' ) ) THEN
  264. DO 150 I = 1, M
  265. WORK( I ) = ONE
  266. 150 CONTINUE
  267. DO 170 J = 1, N
  268. DO 160 I = 1, MIN( M, J-1 )
  269. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  270. 160 CONTINUE
  271. 170 CONTINUE
  272. ELSE
  273. DO 180 I = 1, M
  274. WORK( I ) = ZERO
  275. 180 CONTINUE
  276. DO 200 J = 1, N
  277. DO 190 I = 1, MIN( M, J )
  278. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  279. 190 CONTINUE
  280. 200 CONTINUE
  281. END IF
  282. ELSE
  283. IF( LSAME( DIAG, 'U' ) ) THEN
  284. DO 210 I = 1, N
  285. WORK( I ) = ONE
  286. 210 CONTINUE
  287. DO 220 I = N + 1, M
  288. WORK( I ) = ZERO
  289. 220 CONTINUE
  290. DO 240 J = 1, N
  291. DO 230 I = J + 1, M
  292. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  293. 230 CONTINUE
  294. 240 CONTINUE
  295. ELSE
  296. DO 250 I = 1, M
  297. WORK( I ) = ZERO
  298. 250 CONTINUE
  299. DO 270 J = 1, N
  300. DO 260 I = J, M
  301. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  302. 260 CONTINUE
  303. 270 CONTINUE
  304. END IF
  305. END IF
  306. VALUE = ZERO
  307. DO 280 I = 1, M
  308. SUM = WORK( I )
  309. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  310. 280 CONTINUE
  311. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  312. *
  313. * Find normF(A).
  314. *
  315. IF( LSAME( UPLO, 'U' ) ) THEN
  316. IF( LSAME( DIAG, 'U' ) ) THEN
  317. SCALE = ONE
  318. SUM = MIN( M, N )
  319. DO 290 J = 2, N
  320. CALL SLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  321. 290 CONTINUE
  322. ELSE
  323. SCALE = ZERO
  324. SUM = ONE
  325. DO 300 J = 1, N
  326. CALL SLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  327. 300 CONTINUE
  328. END IF
  329. ELSE
  330. IF( LSAME( DIAG, 'U' ) ) THEN
  331. SCALE = ONE
  332. SUM = MIN( M, N )
  333. DO 310 J = 1, N
  334. CALL SLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  335. $ SUM )
  336. 310 CONTINUE
  337. ELSE
  338. SCALE = ZERO
  339. SUM = ONE
  340. DO 320 J = 1, N
  341. CALL SLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  342. 320 CONTINUE
  343. END IF
  344. END IF
  345. VALUE = SCALE*SQRT( SUM )
  346. END IF
  347. *
  348. SLANTR = VALUE
  349. RETURN
  350. *
  351. * End of SLANTR
  352. *
  353. END