You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpbrfs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. *> \brief \b DPBRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPBRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
  22. * LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  31. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DPBRFS improves the computed solution to a system of linear
  41. *> equations when the coefficient matrix is symmetric positive definite
  42. *> and banded, and provides error bounds and backward error estimates
  43. *> for the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] KD
  63. *> \verbatim
  64. *> KD is INTEGER
  65. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  66. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] NRHS
  70. *> \verbatim
  71. *> NRHS is INTEGER
  72. *> The number of right hand sides, i.e., the number of columns
  73. *> of the matrices B and X. NRHS >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] AB
  77. *> \verbatim
  78. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  79. *> The upper or lower triangle of the symmetric band matrix A,
  80. *> stored in the first KD+1 rows of the array. The j-th column
  81. *> of A is stored in the j-th column of the array AB as follows:
  82. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  83. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDAB
  87. *> \verbatim
  88. *> LDAB is INTEGER
  89. *> The leading dimension of the array AB. LDAB >= KD+1.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] AFB
  93. *> \verbatim
  94. *> AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
  95. *> The triangular factor U or L from the Cholesky factorization
  96. *> A = U**T*U or A = L*L**T of the band matrix A as computed by
  97. *> DPBTRF, in the same storage format as A (see AB).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDAFB
  101. *> \verbatim
  102. *> LDAFB is INTEGER
  103. *> The leading dimension of the array AFB. LDAFB >= KD+1.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] B
  107. *> \verbatim
  108. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  109. *> The right hand side matrix B.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] LDB
  113. *> \verbatim
  114. *> LDB is INTEGER
  115. *> The leading dimension of the array B. LDB >= max(1,N).
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] X
  119. *> \verbatim
  120. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  121. *> On entry, the solution matrix X, as computed by DPBTRS.
  122. *> On exit, the improved solution matrix X.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDX
  126. *> \verbatim
  127. *> LDX is INTEGER
  128. *> The leading dimension of the array X. LDX >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] FERR
  132. *> \verbatim
  133. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  134. *> The estimated forward error bound for each solution vector
  135. *> X(j) (the j-th column of the solution matrix X).
  136. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  137. *> is an estimated upper bound for the magnitude of the largest
  138. *> element in (X(j) - XTRUE) divided by the magnitude of the
  139. *> largest element in X(j). The estimate is as reliable as
  140. *> the estimate for RCOND, and is almost always a slight
  141. *> overestimate of the true error.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] BERR
  145. *> \verbatim
  146. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  147. *> The componentwise relative backward error of each solution
  148. *> vector X(j) (i.e., the smallest relative change in
  149. *> any element of A or B that makes X(j) an exact solution).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] WORK
  153. *> \verbatim
  154. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  155. *> \endverbatim
  156. *>
  157. *> \param[out] IWORK
  158. *> \verbatim
  159. *> IWORK is INTEGER array, dimension (N)
  160. *> \endverbatim
  161. *>
  162. *> \param[out] INFO
  163. *> \verbatim
  164. *> INFO is INTEGER
  165. *> = 0: successful exit
  166. *> < 0: if INFO = -i, the i-th argument had an illegal value
  167. *> \endverbatim
  168. *
  169. *> \par Internal Parameters:
  170. * =========================
  171. *>
  172. *> \verbatim
  173. *> ITMAX is the maximum number of steps of iterative refinement.
  174. *> \endverbatim
  175. *
  176. * Authors:
  177. * ========
  178. *
  179. *> \author Univ. of Tennessee
  180. *> \author Univ. of California Berkeley
  181. *> \author Univ. of Colorado Denver
  182. *> \author NAG Ltd.
  183. *
  184. *> \date December 2016
  185. *
  186. *> \ingroup doubleOTHERcomputational
  187. *
  188. * =====================================================================
  189. SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
  190. $ LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  191. *
  192. * -- LAPACK computational routine (version 3.7.0) --
  193. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  194. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195. * December 2016
  196. *
  197. * .. Scalar Arguments ..
  198. CHARACTER UPLO
  199. INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  200. * ..
  201. * .. Array Arguments ..
  202. INTEGER IWORK( * )
  203. DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  204. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  205. * ..
  206. *
  207. * =====================================================================
  208. *
  209. * .. Parameters ..
  210. INTEGER ITMAX
  211. PARAMETER ( ITMAX = 5 )
  212. DOUBLE PRECISION ZERO
  213. PARAMETER ( ZERO = 0.0D+0 )
  214. DOUBLE PRECISION ONE
  215. PARAMETER ( ONE = 1.0D+0 )
  216. DOUBLE PRECISION TWO
  217. PARAMETER ( TWO = 2.0D+0 )
  218. DOUBLE PRECISION THREE
  219. PARAMETER ( THREE = 3.0D+0 )
  220. * ..
  221. * .. Local Scalars ..
  222. LOGICAL UPPER
  223. INTEGER COUNT, I, J, K, KASE, L, NZ
  224. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  225. * ..
  226. * .. Local Arrays ..
  227. INTEGER ISAVE( 3 )
  228. * ..
  229. * .. External Subroutines ..
  230. EXTERNAL DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
  231. * ..
  232. * .. Intrinsic Functions ..
  233. INTRINSIC ABS, MAX, MIN
  234. * ..
  235. * .. External Functions ..
  236. LOGICAL LSAME
  237. DOUBLE PRECISION DLAMCH
  238. EXTERNAL LSAME, DLAMCH
  239. * ..
  240. * .. Executable Statements ..
  241. *
  242. * Test the input parameters.
  243. *
  244. INFO = 0
  245. UPPER = LSAME( UPLO, 'U' )
  246. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  247. INFO = -1
  248. ELSE IF( N.LT.0 ) THEN
  249. INFO = -2
  250. ELSE IF( KD.LT.0 ) THEN
  251. INFO = -3
  252. ELSE IF( NRHS.LT.0 ) THEN
  253. INFO = -4
  254. ELSE IF( LDAB.LT.KD+1 ) THEN
  255. INFO = -6
  256. ELSE IF( LDAFB.LT.KD+1 ) THEN
  257. INFO = -8
  258. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  259. INFO = -10
  260. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  261. INFO = -12
  262. END IF
  263. IF( INFO.NE.0 ) THEN
  264. CALL XERBLA( 'DPBRFS', -INFO )
  265. RETURN
  266. END IF
  267. *
  268. * Quick return if possible
  269. *
  270. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  271. DO 10 J = 1, NRHS
  272. FERR( J ) = ZERO
  273. BERR( J ) = ZERO
  274. 10 CONTINUE
  275. RETURN
  276. END IF
  277. *
  278. * NZ = maximum number of nonzero elements in each row of A, plus 1
  279. *
  280. NZ = MIN( N+1, 2*KD+2 )
  281. EPS = DLAMCH( 'Epsilon' )
  282. SAFMIN = DLAMCH( 'Safe minimum' )
  283. SAFE1 = NZ*SAFMIN
  284. SAFE2 = SAFE1 / EPS
  285. *
  286. * Do for each right hand side
  287. *
  288. DO 140 J = 1, NRHS
  289. *
  290. COUNT = 1
  291. LSTRES = THREE
  292. 20 CONTINUE
  293. *
  294. * Loop until stopping criterion is satisfied.
  295. *
  296. * Compute residual R = B - A * X
  297. *
  298. CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  299. CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  300. $ WORK( N+1 ), 1 )
  301. *
  302. * Compute componentwise relative backward error from formula
  303. *
  304. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  305. *
  306. * where abs(Z) is the componentwise absolute value of the matrix
  307. * or vector Z. If the i-th component of the denominator is less
  308. * than SAFE2, then SAFE1 is added to the i-th components of the
  309. * numerator and denominator before dividing.
  310. *
  311. DO 30 I = 1, N
  312. WORK( I ) = ABS( B( I, J ) )
  313. 30 CONTINUE
  314. *
  315. * Compute abs(A)*abs(X) + abs(B).
  316. *
  317. IF( UPPER ) THEN
  318. DO 50 K = 1, N
  319. S = ZERO
  320. XK = ABS( X( K, J ) )
  321. L = KD + 1 - K
  322. DO 40 I = MAX( 1, K-KD ), K - 1
  323. WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  324. S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  325. 40 CONTINUE
  326. WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
  327. 50 CONTINUE
  328. ELSE
  329. DO 70 K = 1, N
  330. S = ZERO
  331. XK = ABS( X( K, J ) )
  332. WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
  333. L = 1 - K
  334. DO 60 I = K + 1, MIN( N, K+KD )
  335. WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
  336. S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
  337. 60 CONTINUE
  338. WORK( K ) = WORK( K ) + S
  339. 70 CONTINUE
  340. END IF
  341. S = ZERO
  342. DO 80 I = 1, N
  343. IF( WORK( I ).GT.SAFE2 ) THEN
  344. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  345. ELSE
  346. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  347. $ ( WORK( I )+SAFE1 ) )
  348. END IF
  349. 80 CONTINUE
  350. BERR( J ) = S
  351. *
  352. * Test stopping criterion. Continue iterating if
  353. * 1) The residual BERR(J) is larger than machine epsilon, and
  354. * 2) BERR(J) decreased by at least a factor of 2 during the
  355. * last iteration, and
  356. * 3) At most ITMAX iterations tried.
  357. *
  358. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  359. $ COUNT.LE.ITMAX ) THEN
  360. *
  361. * Update solution and try again.
  362. *
  363. CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  364. $ INFO )
  365. CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  366. LSTRES = BERR( J )
  367. COUNT = COUNT + 1
  368. GO TO 20
  369. END IF
  370. *
  371. * Bound error from formula
  372. *
  373. * norm(X - XTRUE) / norm(X) .le. FERR =
  374. * norm( abs(inv(A))*
  375. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  376. *
  377. * where
  378. * norm(Z) is the magnitude of the largest component of Z
  379. * inv(A) is the inverse of A
  380. * abs(Z) is the componentwise absolute value of the matrix or
  381. * vector Z
  382. * NZ is the maximum number of nonzeros in any row of A, plus 1
  383. * EPS is machine epsilon
  384. *
  385. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  386. * is incremented by SAFE1 if the i-th component of
  387. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  388. *
  389. * Use DLACN2 to estimate the infinity-norm of the matrix
  390. * inv(A) * diag(W),
  391. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  392. *
  393. DO 90 I = 1, N
  394. IF( WORK( I ).GT.SAFE2 ) THEN
  395. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  396. ELSE
  397. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  398. END IF
  399. 90 CONTINUE
  400. *
  401. KASE = 0
  402. 100 CONTINUE
  403. CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  404. $ KASE, ISAVE )
  405. IF( KASE.NE.0 ) THEN
  406. IF( KASE.EQ.1 ) THEN
  407. *
  408. * Multiply by diag(W)*inv(A**T).
  409. *
  410. CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  411. $ INFO )
  412. DO 110 I = 1, N
  413. WORK( N+I ) = WORK( N+I )*WORK( I )
  414. 110 CONTINUE
  415. ELSE IF( KASE.EQ.2 ) THEN
  416. *
  417. * Multiply by inv(A)*diag(W).
  418. *
  419. DO 120 I = 1, N
  420. WORK( N+I ) = WORK( N+I )*WORK( I )
  421. 120 CONTINUE
  422. CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
  423. $ INFO )
  424. END IF
  425. GO TO 100
  426. END IF
  427. *
  428. * Normalize error.
  429. *
  430. LSTRES = ZERO
  431. DO 130 I = 1, N
  432. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  433. 130 CONTINUE
  434. IF( LSTRES.NE.ZERO )
  435. $ FERR( J ) = FERR( J ) / LSTRES
  436. *
  437. 140 CONTINUE
  438. *
  439. RETURN
  440. *
  441. * End of DPBRFS
  442. *
  443. END