You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorbdb.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. *> \brief \b DORBDB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DORBDB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  22. * X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  23. * TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER SIGNS, TRANS
  27. * INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  28. * $ Q
  29. * ..
  30. * .. Array Arguments ..
  31. * DOUBLE PRECISION PHI( * ), THETA( * )
  32. * DOUBLE PRECISION TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  33. * $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  34. * $ X21( LDX21, * ), X22( LDX22, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
  44. *> partitioned orthogonal matrix X:
  45. *>
  46. *> [ B11 | B12 0 0 ]
  47. *> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T
  48. *> X = [-----------] = [---------] [----------------] [---------] .
  49. *> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
  50. *> [ 0 | 0 0 I ]
  51. *>
  52. *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
  53. *> not the case, then X must be transposed and/or permuted. This can be
  54. *> done in constant time using the TRANS and SIGNS options. See DORCSD
  55. *> for details.)
  56. *>
  57. *> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
  58. *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
  59. *> represented implicitly by Householder vectors.
  60. *>
  61. *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
  62. *> implicitly by angles THETA, PHI.
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] TRANS
  69. *> \verbatim
  70. *> TRANS is CHARACTER
  71. *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
  72. *> order;
  73. *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
  74. *> major order.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] SIGNS
  78. *> \verbatim
  79. *> SIGNS is CHARACTER
  80. *> = 'O': The lower-left block is made nonpositive (the
  81. *> "other" convention);
  82. *> otherwise: The upper-right block is made nonpositive (the
  83. *> "default" convention).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] M
  87. *> \verbatim
  88. *> M is INTEGER
  89. *> The number of rows and columns in X.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] P
  93. *> \verbatim
  94. *> P is INTEGER
  95. *> The number of rows in X11 and X12. 0 <= P <= M.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] Q
  99. *> \verbatim
  100. *> Q is INTEGER
  101. *> The number of columns in X11 and X21. 0 <= Q <=
  102. *> MIN(P,M-P,M-Q).
  103. *> \endverbatim
  104. *>
  105. *> \param[in,out] X11
  106. *> \verbatim
  107. *> X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  108. *> On entry, the top-left block of the orthogonal matrix to be
  109. *> reduced. On exit, the form depends on TRANS:
  110. *> If TRANS = 'N', then
  111. *> the columns of tril(X11) specify reflectors for P1,
  112. *> the rows of triu(X11,1) specify reflectors for Q1;
  113. *> else TRANS = 'T', and
  114. *> the rows of triu(X11) specify reflectors for P1,
  115. *> the columns of tril(X11,-1) specify reflectors for Q1.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDX11
  119. *> \verbatim
  120. *> LDX11 is INTEGER
  121. *> The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122. *> P; else LDX11 >= Q.
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] X12
  126. *> \verbatim
  127. *> X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q)
  128. *> On entry, the top-right block of the orthogonal matrix to
  129. *> be reduced. On exit, the form depends on TRANS:
  130. *> If TRANS = 'N', then
  131. *> the rows of triu(X12) specify the first P reflectors for
  132. *> Q2;
  133. *> else TRANS = 'T', and
  134. *> the columns of tril(X12) specify the first P reflectors
  135. *> for Q2.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] LDX12
  139. *> \verbatim
  140. *> LDX12 is INTEGER
  141. *> The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142. *> P; else LDX11 >= M-Q.
  143. *> \endverbatim
  144. *>
  145. *> \param[in,out] X21
  146. *> \verbatim
  147. *> X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  148. *> On entry, the bottom-left block of the orthogonal matrix to
  149. *> be reduced. On exit, the form depends on TRANS:
  150. *> If TRANS = 'N', then
  151. *> the columns of tril(X21) specify reflectors for P2;
  152. *> else TRANS = 'T', and
  153. *> the rows of triu(X21) specify reflectors for P2.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] LDX21
  157. *> \verbatim
  158. *> LDX21 is INTEGER
  159. *> The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160. *> M-P; else LDX21 >= Q.
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] X22
  164. *> \verbatim
  165. *> X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q)
  166. *> On entry, the bottom-right block of the orthogonal matrix to
  167. *> be reduced. On exit, the form depends on TRANS:
  168. *> If TRANS = 'N', then
  169. *> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170. *> M-P-Q reflectors for Q2,
  171. *> else TRANS = 'T', and
  172. *> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173. *> M-P-Q reflectors for P2.
  174. *> \endverbatim
  175. *>
  176. *> \param[in] LDX22
  177. *> \verbatim
  178. *> LDX22 is INTEGER
  179. *> The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180. *> M-P; else LDX22 >= M-Q.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] THETA
  184. *> \verbatim
  185. *> THETA is DOUBLE PRECISION array, dimension (Q)
  186. *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187. *> be computed from the angles THETA and PHI. See Further
  188. *> Details.
  189. *> \endverbatim
  190. *>
  191. *> \param[out] PHI
  192. *> \verbatim
  193. *> PHI is DOUBLE PRECISION array, dimension (Q-1)
  194. *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195. *> be computed from the angles THETA and PHI. See Further
  196. *> Details.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] TAUP1
  200. *> \verbatim
  201. *> TAUP1 is DOUBLE PRECISION array, dimension (P)
  202. *> The scalar factors of the elementary reflectors that define
  203. *> P1.
  204. *> \endverbatim
  205. *>
  206. *> \param[out] TAUP2
  207. *> \verbatim
  208. *> TAUP2 is DOUBLE PRECISION array, dimension (M-P)
  209. *> The scalar factors of the elementary reflectors that define
  210. *> P2.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] TAUQ1
  214. *> \verbatim
  215. *> TAUQ1 is DOUBLE PRECISION array, dimension (Q)
  216. *> The scalar factors of the elementary reflectors that define
  217. *> Q1.
  218. *> \endverbatim
  219. *>
  220. *> \param[out] TAUQ2
  221. *> \verbatim
  222. *> TAUQ2 is DOUBLE PRECISION array, dimension (M-Q)
  223. *> The scalar factors of the elementary reflectors that define
  224. *> Q2.
  225. *> \endverbatim
  226. *>
  227. *> \param[out] WORK
  228. *> \verbatim
  229. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  230. *> \endverbatim
  231. *>
  232. *> \param[in] LWORK
  233. *> \verbatim
  234. *> LWORK is INTEGER
  235. *> The dimension of the array WORK. LWORK >= M-Q.
  236. *>
  237. *> If LWORK = -1, then a workspace query is assumed; the routine
  238. *> only calculates the optimal size of the WORK array, returns
  239. *> this value as the first entry of the WORK array, and no error
  240. *> message related to LWORK is issued by XERBLA.
  241. *> \endverbatim
  242. *>
  243. *> \param[out] INFO
  244. *> \verbatim
  245. *> INFO is INTEGER
  246. *> = 0: successful exit.
  247. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  248. *> \endverbatim
  249. *
  250. * Authors:
  251. * ========
  252. *
  253. *> \author Univ. of Tennessee
  254. *> \author Univ. of California Berkeley
  255. *> \author Univ. of Colorado Denver
  256. *> \author NAG Ltd.
  257. *
  258. *> \date December 2016
  259. *
  260. *> \ingroup doubleOTHERcomputational
  261. *
  262. *> \par Further Details:
  263. * =====================
  264. *>
  265. *> \verbatim
  266. *>
  267. *> The bidiagonal blocks B11, B12, B21, and B22 are represented
  268. *> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269. *> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270. *> lower bidiagonal. Every entry in each bidiagonal band is a product
  271. *> of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272. *> [1] or DORCSD for details.
  273. *>
  274. *> P1, P2, Q1, and Q2 are represented as products of elementary
  275. *> reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
  276. *> using DORGQR and DORGLQ.
  277. *> \endverbatim
  278. *
  279. *> \par References:
  280. * ================
  281. *>
  282. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283. *> Algorithms, 50(1):33-65, 2009.
  284. *>
  285. * =====================================================================
  286. SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287. $ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288. $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289. *
  290. * -- LAPACK computational routine (version 3.7.0) --
  291. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  292. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293. * December 2016
  294. *
  295. * .. Scalar Arguments ..
  296. CHARACTER SIGNS, TRANS
  297. INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298. $ Q
  299. * ..
  300. * .. Array Arguments ..
  301. DOUBLE PRECISION PHI( * ), THETA( * )
  302. DOUBLE PRECISION TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303. $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304. $ X21( LDX21, * ), X22( LDX22, * )
  305. * ..
  306. *
  307. * ====================================================================
  308. *
  309. * .. Parameters ..
  310. DOUBLE PRECISION REALONE
  311. PARAMETER ( REALONE = 1.0D0 )
  312. DOUBLE PRECISION ONE
  313. PARAMETER ( ONE = 1.0D0 )
  314. * ..
  315. * .. Local Scalars ..
  316. LOGICAL COLMAJOR, LQUERY
  317. INTEGER I, LWORKMIN, LWORKOPT
  318. DOUBLE PRECISION Z1, Z2, Z3, Z4
  319. * ..
  320. * .. External Subroutines ..
  321. EXTERNAL DAXPY, DLARF, DLARFGP, DSCAL, XERBLA
  322. * ..
  323. * .. External Functions ..
  324. DOUBLE PRECISION DNRM2
  325. LOGICAL LSAME
  326. EXTERNAL DNRM2, LSAME
  327. * ..
  328. * .. Intrinsic Functions
  329. INTRINSIC ATAN2, COS, MAX, SIN
  330. * ..
  331. * .. Executable Statements ..
  332. *
  333. * Test input arguments
  334. *
  335. INFO = 0
  336. COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  337. IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  338. Z1 = REALONE
  339. Z2 = REALONE
  340. Z3 = REALONE
  341. Z4 = REALONE
  342. ELSE
  343. Z1 = REALONE
  344. Z2 = -REALONE
  345. Z3 = REALONE
  346. Z4 = -REALONE
  347. END IF
  348. LQUERY = LWORK .EQ. -1
  349. *
  350. IF( M .LT. 0 ) THEN
  351. INFO = -3
  352. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  353. INFO = -4
  354. ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  355. $ Q .GT. M-Q ) THEN
  356. INFO = -5
  357. ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  358. INFO = -7
  359. ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  360. INFO = -7
  361. ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  362. INFO = -9
  363. ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  364. INFO = -9
  365. ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  366. INFO = -11
  367. ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  368. INFO = -11
  369. ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  370. INFO = -13
  371. ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  372. INFO = -13
  373. END IF
  374. *
  375. * Compute workspace
  376. *
  377. IF( INFO .EQ. 0 ) THEN
  378. LWORKOPT = M - Q
  379. LWORKMIN = M - Q
  380. WORK(1) = LWORKOPT
  381. IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  382. INFO = -21
  383. END IF
  384. END IF
  385. IF( INFO .NE. 0 ) THEN
  386. CALL XERBLA( 'xORBDB', -INFO )
  387. RETURN
  388. ELSE IF( LQUERY ) THEN
  389. RETURN
  390. END IF
  391. *
  392. * Handle column-major and row-major separately
  393. *
  394. IF( COLMAJOR ) THEN
  395. *
  396. * Reduce columns 1, ..., Q of X11, X12, X21, and X22
  397. *
  398. DO I = 1, Q
  399. *
  400. IF( I .EQ. 1 ) THEN
  401. CALL DSCAL( P-I+1, Z1, X11(I,I), 1 )
  402. ELSE
  403. CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
  404. CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
  405. $ 1, X11(I,I), 1 )
  406. END IF
  407. IF( I .EQ. 1 ) THEN
  408. CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 )
  409. ELSE
  410. CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
  411. CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
  412. $ 1, X21(I,I), 1 )
  413. END IF
  414. *
  415. THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ),
  416. $ DNRM2( P-I+1, X11(I,I), 1 ) )
  417. *
  418. IF( P .GT. I ) THEN
  419. CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  420. ELSE IF( P .EQ. I ) THEN
  421. CALL DLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
  422. END IF
  423. X11(I,I) = ONE
  424. IF ( M-P .GT. I ) THEN
  425. CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
  426. $ TAUP2(I) )
  427. ELSE IF ( M-P .EQ. I ) THEN
  428. CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1, TAUP2(I) )
  429. END IF
  430. X21(I,I) = ONE
  431. *
  432. IF ( Q .GT. I ) THEN
  433. CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
  434. $ X11(I,I+1), LDX11, WORK )
  435. END IF
  436. IF ( M-Q+1 .GT. I ) THEN
  437. CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
  438. $ X12(I,I), LDX12, WORK )
  439. END IF
  440. IF ( Q .GT. I ) THEN
  441. CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
  442. $ X21(I,I+1), LDX21, WORK )
  443. END IF
  444. IF ( M-Q+1 .GT. I ) THEN
  445. CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
  446. $ X22(I,I), LDX22, WORK )
  447. END IF
  448. *
  449. IF( I .LT. Q ) THEN
  450. CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
  451. $ LDX11 )
  452. CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
  453. $ X11(I,I+1), LDX11 )
  454. END IF
  455. CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
  456. CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
  457. $ X12(I,I), LDX12 )
  458. *
  459. IF( I .LT. Q )
  460. $ PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ),
  461. $ DNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  462. *
  463. IF( I .LT. Q ) THEN
  464. IF ( Q-I .EQ. 1 ) THEN
  465. CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
  466. $ TAUQ1(I) )
  467. ELSE
  468. CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  469. $ TAUQ1(I) )
  470. END IF
  471. X11(I,I+1) = ONE
  472. END IF
  473. IF ( Q+I-1 .LT. M ) THEN
  474. IF ( M-Q .EQ. I ) THEN
  475. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  476. $ TAUQ2(I) )
  477. ELSE
  478. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  479. $ TAUQ2(I) )
  480. END IF
  481. END IF
  482. X12(I,I) = ONE
  483. *
  484. IF( I .LT. Q ) THEN
  485. CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  486. $ X11(I+1,I+1), LDX11, WORK )
  487. CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  488. $ X21(I+1,I+1), LDX21, WORK )
  489. END IF
  490. IF ( P .GT. I ) THEN
  491. CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  492. $ X12(I+1,I), LDX12, WORK )
  493. END IF
  494. IF ( M-P .GT. I ) THEN
  495. CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
  496. $ TAUQ2(I), X22(I+1,I), LDX22, WORK )
  497. END IF
  498. *
  499. END DO
  500. *
  501. * Reduce columns Q + 1, ..., P of X12, X22
  502. *
  503. DO I = Q + 1, P
  504. *
  505. CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 )
  506. IF ( I .GE. M-Q ) THEN
  507. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  508. $ TAUQ2(I) )
  509. ELSE
  510. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  511. $ TAUQ2(I) )
  512. END IF
  513. X12(I,I) = ONE
  514. *
  515. IF ( P .GT. I ) THEN
  516. CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  517. $ X12(I+1,I), LDX12, WORK )
  518. END IF
  519. IF( M-P-Q .GE. 1 )
  520. $ CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  521. $ TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  522. *
  523. END DO
  524. *
  525. * Reduce columns P + 1, ..., M - Q of X12, X22
  526. *
  527. DO I = 1, M - P - Q
  528. *
  529. CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
  530. IF ( I .EQ. M-P-Q ) THEN
  531. CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I),
  532. $ LDX22, TAUQ2(P+I) )
  533. ELSE
  534. CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  535. $ LDX22, TAUQ2(P+I) )
  536. END IF
  537. X22(Q+I,P+I) = ONE
  538. IF ( I .LT. M-P-Q ) THEN
  539. CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  540. $ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  541. END IF
  542. *
  543. END DO
  544. *
  545. ELSE
  546. *
  547. * Reduce columns 1, ..., Q of X11, X12, X21, X22
  548. *
  549. DO I = 1, Q
  550. *
  551. IF( I .EQ. 1 ) THEN
  552. CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 )
  553. ELSE
  554. CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
  555. CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
  556. $ LDX12, X11(I,I), LDX11 )
  557. END IF
  558. IF( I .EQ. 1 ) THEN
  559. CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
  560. ELSE
  561. CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
  562. CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
  563. $ LDX22, X21(I,I), LDX21 )
  564. END IF
  565. *
  566. THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ),
  567. $ DNRM2( P-I+1, X11(I,I), LDX11 ) )
  568. *
  569. CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  570. X11(I,I) = ONE
  571. IF ( I .EQ. M-P ) THEN
  572. CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
  573. $ TAUP2(I) )
  574. ELSE
  575. CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  576. $ TAUP2(I) )
  577. END IF
  578. X21(I,I) = ONE
  579. *
  580. IF ( Q .GT. I ) THEN
  581. CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  582. $ X11(I+1,I), LDX11, WORK )
  583. END IF
  584. IF ( M-Q+1 .GT. I ) THEN
  585. CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11,
  586. $ TAUP1(I), X12(I,I), LDX12, WORK )
  587. END IF
  588. IF ( Q .GT. I ) THEN
  589. CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  590. $ X21(I+1,I), LDX21, WORK )
  591. END IF
  592. IF ( M-Q+1 .GT. I ) THEN
  593. CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  594. $ TAUP2(I), X22(I,I), LDX22, WORK )
  595. END IF
  596. *
  597. IF( I .LT. Q ) THEN
  598. CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
  599. CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
  600. $ X11(I+1,I), 1 )
  601. END IF
  602. CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
  603. CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
  604. $ X12(I,I), 1 )
  605. *
  606. IF( I .LT. Q )
  607. $ PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ),
  608. $ DNRM2( M-Q-I+1, X12(I,I), 1 ) )
  609. *
  610. IF( I .LT. Q ) THEN
  611. IF ( Q-I .EQ. 1) THEN
  612. CALL DLARFGP( Q-I, X11(I+1,I), X11(I+1,I), 1,
  613. $ TAUQ1(I) )
  614. ELSE
  615. CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1,
  616. $ TAUQ1(I) )
  617. END IF
  618. X11(I+1,I) = ONE
  619. END IF
  620. IF ( M-Q .GT. I ) THEN
  621. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1,
  622. $ TAUQ2(I) )
  623. ELSE
  624. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), 1,
  625. $ TAUQ2(I) )
  626. END IF
  627. X12(I,I) = ONE
  628. *
  629. IF( I .LT. Q ) THEN
  630. CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
  631. $ X11(I+1,I+1), LDX11, WORK )
  632. CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
  633. $ X21(I+1,I+1), LDX21, WORK )
  634. END IF
  635. CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  636. $ X12(I,I+1), LDX12, WORK )
  637. IF ( M-P-I .GT. 0 ) THEN
  638. CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
  639. $ X22(I,I+1), LDX22, WORK )
  640. END IF
  641. *
  642. END DO
  643. *
  644. * Reduce columns Q + 1, ..., P of X12, X22
  645. *
  646. DO I = Q + 1, P
  647. *
  648. CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 )
  649. CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  650. X12(I,I) = ONE
  651. *
  652. IF ( P .GT. I ) THEN
  653. CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  654. $ X12(I,I+1), LDX12, WORK )
  655. END IF
  656. IF( M-P-Q .GE. 1 )
  657. $ CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
  658. $ X22(I,Q+1), LDX22, WORK )
  659. *
  660. END DO
  661. *
  662. * Reduce columns P + 1, ..., M - Q of X12, X22
  663. *
  664. DO I = 1, M - P - Q
  665. *
  666. CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
  667. IF ( M-P-Q .EQ. I ) THEN
  668. CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I,Q+I), 1,
  669. $ TAUQ2(P+I) )
  670. ELSE
  671. CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  672. $ TAUQ2(P+I) )
  673. CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  674. $ TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
  675. END IF
  676. X22(P+I,Q+I) = ONE
  677. *
  678. END DO
  679. *
  680. END IF
  681. *
  682. RETURN
  683. *
  684. * End of DORBDB
  685. *
  686. END