You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatrs.f 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966
  1. *> \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, LDA, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX A( LDA, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATRS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow. Here A is an upper or lower
  45. *> triangular matrix, A**T denotes the transpose of A, A**H denotes the
  46. *> conjugate transpose of A, x and b are n-element vectors, and s is a
  47. *> scaling factor, usually less than or equal to 1, chosen so that the
  48. *> components of x will be less than the overflow threshold. If the
  49. *> unscaled problem will not cause overflow, the Level 2 BLAS routine
  50. *> CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
  51. *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,N)
  100. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  101. *> upper triangular part of the array A contains the upper
  102. *> triangular matrix, and the strictly lower triangular part of
  103. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  104. *> triangular part of the array A contains the lower triangular
  105. *> matrix, and the strictly upper triangular part of A is not
  106. *> referenced. If DIAG = 'U', the diagonal elements of A are
  107. *> also not referenced and are assumed to be 1.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDA
  111. *> \verbatim
  112. *> LDA is INTEGER
  113. *> The leading dimension of the array A. LDA >= max (1,N).
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] X
  117. *> \verbatim
  118. *> X is COMPLEX array, dimension (N)
  119. *> On entry, the right hand side b of the triangular system.
  120. *> On exit, X is overwritten by the solution vector x.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] SCALE
  124. *> \verbatim
  125. *> SCALE is REAL
  126. *> The scaling factor s for the triangular system
  127. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  128. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  129. *> the vector x is an exact or approximate solution to A*x = 0.
  130. *> \endverbatim
  131. *>
  132. *> \param[in,out] CNORM
  133. *> \verbatim
  134. *> CNORM is REAL array, dimension (N)
  135. *>
  136. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  137. *> contains the norm of the off-diagonal part of the j-th column
  138. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  139. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  140. *> must be greater than or equal to the 1-norm.
  141. *>
  142. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  143. *> returns the 1-norm of the offdiagonal part of the j-th column
  144. *> of A.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -k, the k-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date December 2016
  163. *
  164. *> \ingroup complexOTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> A rough bound on x is computed; if that is less than overflow, CTRSV
  172. *> is called, otherwise, specific code is used which checks for possible
  173. *> overflow or divide-by-zero at every operation.
  174. *>
  175. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  176. *> if A is lower triangular is
  177. *>
  178. *> x[1:n] := b[1:n]
  179. *> for j = 1, ..., n
  180. *> x(j) := x(j) / A(j,j)
  181. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  182. *> end
  183. *>
  184. *> Define bounds on the components of x after j iterations of the loop:
  185. *> M(j) = bound on x[1:j]
  186. *> G(j) = bound on x[j+1:n]
  187. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  188. *>
  189. *> Then for iteration j+1 we have
  190. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  191. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  192. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  193. *>
  194. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  195. *> column j+1 of A, not counting the diagonal. Hence
  196. *>
  197. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  198. *> 1<=i<=j
  199. *> and
  200. *>
  201. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  202. *> 1<=i< j
  203. *>
  204. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
  205. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  206. *> max(underflow, 1/overflow).
  207. *>
  208. *> The bound on x(j) is also used to determine when a step in the
  209. *> columnwise method can be performed without fear of overflow. If
  210. *> the computed bound is greater than a large constant, x is scaled to
  211. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  212. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  213. *>
  214. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  215. *> A**H *x = b. The basic algorithm for A upper triangular is
  216. *>
  217. *> for j = 1, ..., n
  218. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  219. *> end
  220. *>
  221. *> We simultaneously compute two bounds
  222. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  223. *> M(j) = bound on x(i), 1<=i<=j
  224. *>
  225. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  226. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  227. *> Then the bound on x(j) is
  228. *>
  229. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  230. *>
  231. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  232. *> 1<=i<=j
  233. *>
  234. *> and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
  235. *> than max(underflow, 1/overflow).
  236. *> \endverbatim
  237. *>
  238. * =====================================================================
  239. SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  240. $ CNORM, INFO )
  241. *
  242. * -- LAPACK auxiliary routine (version 3.7.0) --
  243. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  244. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  245. * December 2016
  246. *
  247. * .. Scalar Arguments ..
  248. CHARACTER DIAG, NORMIN, TRANS, UPLO
  249. INTEGER INFO, LDA, N
  250. REAL SCALE
  251. * ..
  252. * .. Array Arguments ..
  253. REAL CNORM( * )
  254. COMPLEX A( LDA, * ), X( * )
  255. * ..
  256. *
  257. * =====================================================================
  258. *
  259. * .. Parameters ..
  260. REAL ZERO, HALF, ONE, TWO
  261. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  262. $ TWO = 2.0E+0 )
  263. * ..
  264. * .. Local Scalars ..
  265. LOGICAL NOTRAN, NOUNIT, UPPER
  266. INTEGER I, IMAX, J, JFIRST, JINC, JLAST
  267. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  268. $ XBND, XJ, XMAX
  269. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  270. * ..
  271. * .. External Functions ..
  272. LOGICAL LSAME
  273. INTEGER ICAMAX, ISAMAX
  274. REAL SCASUM, SLAMCH
  275. COMPLEX CDOTC, CDOTU, CLADIV
  276. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  277. $ CDOTU, CLADIV
  278. * ..
  279. * .. External Subroutines ..
  280. EXTERNAL CAXPY, CSSCAL, CTRSV, SLABAD, SSCAL, XERBLA
  281. * ..
  282. * .. Intrinsic Functions ..
  283. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  284. * ..
  285. * .. Statement Functions ..
  286. REAL CABS1, CABS2
  287. * ..
  288. * .. Statement Function definitions ..
  289. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  290. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  291. $ ABS( AIMAG( ZDUM ) / 2. )
  292. * ..
  293. * .. Executable Statements ..
  294. *
  295. INFO = 0
  296. UPPER = LSAME( UPLO, 'U' )
  297. NOTRAN = LSAME( TRANS, 'N' )
  298. NOUNIT = LSAME( DIAG, 'N' )
  299. *
  300. * Test the input parameters.
  301. *
  302. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  303. INFO = -1
  304. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  305. $ LSAME( TRANS, 'C' ) ) THEN
  306. INFO = -2
  307. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  308. INFO = -3
  309. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  310. $ LSAME( NORMIN, 'N' ) ) THEN
  311. INFO = -4
  312. ELSE IF( N.LT.0 ) THEN
  313. INFO = -5
  314. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  315. INFO = -7
  316. END IF
  317. IF( INFO.NE.0 ) THEN
  318. CALL XERBLA( 'CLATRS', -INFO )
  319. RETURN
  320. END IF
  321. *
  322. * Quick return if possible
  323. *
  324. IF( N.EQ.0 )
  325. $ RETURN
  326. *
  327. * Determine machine dependent parameters to control overflow.
  328. *
  329. SMLNUM = SLAMCH( 'Safe minimum' )
  330. BIGNUM = ONE / SMLNUM
  331. CALL SLABAD( SMLNUM, BIGNUM )
  332. SMLNUM = SMLNUM / SLAMCH( 'Precision' )
  333. BIGNUM = ONE / SMLNUM
  334. SCALE = ONE
  335. *
  336. IF( LSAME( NORMIN, 'N' ) ) THEN
  337. *
  338. * Compute the 1-norm of each column, not including the diagonal.
  339. *
  340. IF( UPPER ) THEN
  341. *
  342. * A is upper triangular.
  343. *
  344. DO 10 J = 1, N
  345. CNORM( J ) = SCASUM( J-1, A( 1, J ), 1 )
  346. 10 CONTINUE
  347. ELSE
  348. *
  349. * A is lower triangular.
  350. *
  351. DO 20 J = 1, N - 1
  352. CNORM( J ) = SCASUM( N-J, A( J+1, J ), 1 )
  353. 20 CONTINUE
  354. CNORM( N ) = ZERO
  355. END IF
  356. END IF
  357. *
  358. * Scale the column norms by TSCAL if the maximum element in CNORM is
  359. * greater than BIGNUM/2.
  360. *
  361. IMAX = ISAMAX( N, CNORM, 1 )
  362. TMAX = CNORM( IMAX )
  363. IF( TMAX.LE.BIGNUM*HALF ) THEN
  364. TSCAL = ONE
  365. ELSE
  366. TSCAL = HALF / ( SMLNUM*TMAX )
  367. CALL SSCAL( N, TSCAL, CNORM, 1 )
  368. END IF
  369. *
  370. * Compute a bound on the computed solution vector to see if the
  371. * Level 2 BLAS routine CTRSV can be used.
  372. *
  373. XMAX = ZERO
  374. DO 30 J = 1, N
  375. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  376. 30 CONTINUE
  377. XBND = XMAX
  378. *
  379. IF( NOTRAN ) THEN
  380. *
  381. * Compute the growth in A * x = b.
  382. *
  383. IF( UPPER ) THEN
  384. JFIRST = N
  385. JLAST = 1
  386. JINC = -1
  387. ELSE
  388. JFIRST = 1
  389. JLAST = N
  390. JINC = 1
  391. END IF
  392. *
  393. IF( TSCAL.NE.ONE ) THEN
  394. GROW = ZERO
  395. GO TO 60
  396. END IF
  397. *
  398. IF( NOUNIT ) THEN
  399. *
  400. * A is non-unit triangular.
  401. *
  402. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  403. * Initially, G(0) = max{x(i), i=1,...,n}.
  404. *
  405. GROW = HALF / MAX( XBND, SMLNUM )
  406. XBND = GROW
  407. DO 40 J = JFIRST, JLAST, JINC
  408. *
  409. * Exit the loop if the growth factor is too small.
  410. *
  411. IF( GROW.LE.SMLNUM )
  412. $ GO TO 60
  413. *
  414. TJJS = A( J, J )
  415. TJJ = CABS1( TJJS )
  416. *
  417. IF( TJJ.GE.SMLNUM ) THEN
  418. *
  419. * M(j) = G(j-1) / abs(A(j,j))
  420. *
  421. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  422. ELSE
  423. *
  424. * M(j) could overflow, set XBND to 0.
  425. *
  426. XBND = ZERO
  427. END IF
  428. *
  429. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  430. *
  431. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  432. *
  433. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  434. ELSE
  435. *
  436. * G(j) could overflow, set GROW to 0.
  437. *
  438. GROW = ZERO
  439. END IF
  440. 40 CONTINUE
  441. GROW = XBND
  442. ELSE
  443. *
  444. * A is unit triangular.
  445. *
  446. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  447. *
  448. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  449. DO 50 J = JFIRST, JLAST, JINC
  450. *
  451. * Exit the loop if the growth factor is too small.
  452. *
  453. IF( GROW.LE.SMLNUM )
  454. $ GO TO 60
  455. *
  456. * G(j) = G(j-1)*( 1 + CNORM(j) )
  457. *
  458. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  459. 50 CONTINUE
  460. END IF
  461. 60 CONTINUE
  462. *
  463. ELSE
  464. *
  465. * Compute the growth in A**T * x = b or A**H * x = b.
  466. *
  467. IF( UPPER ) THEN
  468. JFIRST = 1
  469. JLAST = N
  470. JINC = 1
  471. ELSE
  472. JFIRST = N
  473. JLAST = 1
  474. JINC = -1
  475. END IF
  476. *
  477. IF( TSCAL.NE.ONE ) THEN
  478. GROW = ZERO
  479. GO TO 90
  480. END IF
  481. *
  482. IF( NOUNIT ) THEN
  483. *
  484. * A is non-unit triangular.
  485. *
  486. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  487. * Initially, M(0) = max{x(i), i=1,...,n}.
  488. *
  489. GROW = HALF / MAX( XBND, SMLNUM )
  490. XBND = GROW
  491. DO 70 J = JFIRST, JLAST, JINC
  492. *
  493. * Exit the loop if the growth factor is too small.
  494. *
  495. IF( GROW.LE.SMLNUM )
  496. $ GO TO 90
  497. *
  498. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  499. *
  500. XJ = ONE + CNORM( J )
  501. GROW = MIN( GROW, XBND / XJ )
  502. *
  503. TJJS = A( J, J )
  504. TJJ = CABS1( TJJS )
  505. *
  506. IF( TJJ.GE.SMLNUM ) THEN
  507. *
  508. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  509. *
  510. IF( XJ.GT.TJJ )
  511. $ XBND = XBND*( TJJ / XJ )
  512. ELSE
  513. *
  514. * M(j) could overflow, set XBND to 0.
  515. *
  516. XBND = ZERO
  517. END IF
  518. 70 CONTINUE
  519. GROW = MIN( GROW, XBND )
  520. ELSE
  521. *
  522. * A is unit triangular.
  523. *
  524. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  525. *
  526. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  527. DO 80 J = JFIRST, JLAST, JINC
  528. *
  529. * Exit the loop if the growth factor is too small.
  530. *
  531. IF( GROW.LE.SMLNUM )
  532. $ GO TO 90
  533. *
  534. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  535. *
  536. XJ = ONE + CNORM( J )
  537. GROW = GROW / XJ
  538. 80 CONTINUE
  539. END IF
  540. 90 CONTINUE
  541. END IF
  542. *
  543. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  544. *
  545. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  546. * elements of X is not too small.
  547. *
  548. CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  549. ELSE
  550. *
  551. * Use a Level 1 BLAS solve, scaling intermediate results.
  552. *
  553. IF( XMAX.GT.BIGNUM*HALF ) THEN
  554. *
  555. * Scale X so that its components are less than or equal to
  556. * BIGNUM in absolute value.
  557. *
  558. SCALE = ( BIGNUM*HALF ) / XMAX
  559. CALL CSSCAL( N, SCALE, X, 1 )
  560. XMAX = BIGNUM
  561. ELSE
  562. XMAX = XMAX*TWO
  563. END IF
  564. *
  565. IF( NOTRAN ) THEN
  566. *
  567. * Solve A * x = b
  568. *
  569. DO 110 J = JFIRST, JLAST, JINC
  570. *
  571. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  572. *
  573. XJ = CABS1( X( J ) )
  574. IF( NOUNIT ) THEN
  575. TJJS = A( J, J )*TSCAL
  576. ELSE
  577. TJJS = TSCAL
  578. IF( TSCAL.EQ.ONE )
  579. $ GO TO 105
  580. END IF
  581. TJJ = CABS1( TJJS )
  582. IF( TJJ.GT.SMLNUM ) THEN
  583. *
  584. * abs(A(j,j)) > SMLNUM:
  585. *
  586. IF( TJJ.LT.ONE ) THEN
  587. IF( XJ.GT.TJJ*BIGNUM ) THEN
  588. *
  589. * Scale x by 1/b(j).
  590. *
  591. REC = ONE / XJ
  592. CALL CSSCAL( N, REC, X, 1 )
  593. SCALE = SCALE*REC
  594. XMAX = XMAX*REC
  595. END IF
  596. END IF
  597. X( J ) = CLADIV( X( J ), TJJS )
  598. XJ = CABS1( X( J ) )
  599. ELSE IF( TJJ.GT.ZERO ) THEN
  600. *
  601. * 0 < abs(A(j,j)) <= SMLNUM:
  602. *
  603. IF( XJ.GT.TJJ*BIGNUM ) THEN
  604. *
  605. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  606. * to avoid overflow when dividing by A(j,j).
  607. *
  608. REC = ( TJJ*BIGNUM ) / XJ
  609. IF( CNORM( J ).GT.ONE ) THEN
  610. *
  611. * Scale by 1/CNORM(j) to avoid overflow when
  612. * multiplying x(j) times column j.
  613. *
  614. REC = REC / CNORM( J )
  615. END IF
  616. CALL CSSCAL( N, REC, X, 1 )
  617. SCALE = SCALE*REC
  618. XMAX = XMAX*REC
  619. END IF
  620. X( J ) = CLADIV( X( J ), TJJS )
  621. XJ = CABS1( X( J ) )
  622. ELSE
  623. *
  624. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  625. * scale = 0, and compute a solution to A*x = 0.
  626. *
  627. DO 100 I = 1, N
  628. X( I ) = ZERO
  629. 100 CONTINUE
  630. X( J ) = ONE
  631. XJ = ONE
  632. SCALE = ZERO
  633. XMAX = ZERO
  634. END IF
  635. 105 CONTINUE
  636. *
  637. * Scale x if necessary to avoid overflow when adding a
  638. * multiple of column j of A.
  639. *
  640. IF( XJ.GT.ONE ) THEN
  641. REC = ONE / XJ
  642. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  643. *
  644. * Scale x by 1/(2*abs(x(j))).
  645. *
  646. REC = REC*HALF
  647. CALL CSSCAL( N, REC, X, 1 )
  648. SCALE = SCALE*REC
  649. END IF
  650. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  651. *
  652. * Scale x by 1/2.
  653. *
  654. CALL CSSCAL( N, HALF, X, 1 )
  655. SCALE = SCALE*HALF
  656. END IF
  657. *
  658. IF( UPPER ) THEN
  659. IF( J.GT.1 ) THEN
  660. *
  661. * Compute the update
  662. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  663. *
  664. CALL CAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  665. $ 1 )
  666. I = ICAMAX( J-1, X, 1 )
  667. XMAX = CABS1( X( I ) )
  668. END IF
  669. ELSE
  670. IF( J.LT.N ) THEN
  671. *
  672. * Compute the update
  673. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  674. *
  675. CALL CAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  676. $ X( J+1 ), 1 )
  677. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  678. XMAX = CABS1( X( I ) )
  679. END IF
  680. END IF
  681. 110 CONTINUE
  682. *
  683. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  684. *
  685. * Solve A**T * x = b
  686. *
  687. DO 150 J = JFIRST, JLAST, JINC
  688. *
  689. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  690. * k<>j
  691. *
  692. XJ = CABS1( X( J ) )
  693. USCAL = TSCAL
  694. REC = ONE / MAX( XMAX, ONE )
  695. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  696. *
  697. * If x(j) could overflow, scale x by 1/(2*XMAX).
  698. *
  699. REC = REC*HALF
  700. IF( NOUNIT ) THEN
  701. TJJS = A( J, J )*TSCAL
  702. ELSE
  703. TJJS = TSCAL
  704. END IF
  705. TJJ = CABS1( TJJS )
  706. IF( TJJ.GT.ONE ) THEN
  707. *
  708. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  709. *
  710. REC = MIN( ONE, REC*TJJ )
  711. USCAL = CLADIV( USCAL, TJJS )
  712. END IF
  713. IF( REC.LT.ONE ) THEN
  714. CALL CSSCAL( N, REC, X, 1 )
  715. SCALE = SCALE*REC
  716. XMAX = XMAX*REC
  717. END IF
  718. END IF
  719. *
  720. CSUMJ = ZERO
  721. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  722. *
  723. * If the scaling needed for A in the dot product is 1,
  724. * call CDOTU to perform the dot product.
  725. *
  726. IF( UPPER ) THEN
  727. CSUMJ = CDOTU( J-1, A( 1, J ), 1, X, 1 )
  728. ELSE IF( J.LT.N ) THEN
  729. CSUMJ = CDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  730. END IF
  731. ELSE
  732. *
  733. * Otherwise, use in-line code for the dot product.
  734. *
  735. IF( UPPER ) THEN
  736. DO 120 I = 1, J - 1
  737. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  738. 120 CONTINUE
  739. ELSE IF( J.LT.N ) THEN
  740. DO 130 I = J + 1, N
  741. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  742. 130 CONTINUE
  743. END IF
  744. END IF
  745. *
  746. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  747. *
  748. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  749. * was not used to scale the dotproduct.
  750. *
  751. X( J ) = X( J ) - CSUMJ
  752. XJ = CABS1( X( J ) )
  753. IF( NOUNIT ) THEN
  754. TJJS = A( J, J )*TSCAL
  755. ELSE
  756. TJJS = TSCAL
  757. IF( TSCAL.EQ.ONE )
  758. $ GO TO 145
  759. END IF
  760. *
  761. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  762. *
  763. TJJ = CABS1( TJJS )
  764. IF( TJJ.GT.SMLNUM ) THEN
  765. *
  766. * abs(A(j,j)) > SMLNUM:
  767. *
  768. IF( TJJ.LT.ONE ) THEN
  769. IF( XJ.GT.TJJ*BIGNUM ) THEN
  770. *
  771. * Scale X by 1/abs(x(j)).
  772. *
  773. REC = ONE / XJ
  774. CALL CSSCAL( N, REC, X, 1 )
  775. SCALE = SCALE*REC
  776. XMAX = XMAX*REC
  777. END IF
  778. END IF
  779. X( J ) = CLADIV( X( J ), TJJS )
  780. ELSE IF( TJJ.GT.ZERO ) THEN
  781. *
  782. * 0 < abs(A(j,j)) <= SMLNUM:
  783. *
  784. IF( XJ.GT.TJJ*BIGNUM ) THEN
  785. *
  786. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  787. *
  788. REC = ( TJJ*BIGNUM ) / XJ
  789. CALL CSSCAL( N, REC, X, 1 )
  790. SCALE = SCALE*REC
  791. XMAX = XMAX*REC
  792. END IF
  793. X( J ) = CLADIV( X( J ), TJJS )
  794. ELSE
  795. *
  796. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  797. * scale = 0 and compute a solution to A**T *x = 0.
  798. *
  799. DO 140 I = 1, N
  800. X( I ) = ZERO
  801. 140 CONTINUE
  802. X( J ) = ONE
  803. SCALE = ZERO
  804. XMAX = ZERO
  805. END IF
  806. 145 CONTINUE
  807. ELSE
  808. *
  809. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  810. * product has already been divided by 1/A(j,j).
  811. *
  812. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  813. END IF
  814. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  815. 150 CONTINUE
  816. *
  817. ELSE
  818. *
  819. * Solve A**H * x = b
  820. *
  821. DO 190 J = JFIRST, JLAST, JINC
  822. *
  823. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  824. * k<>j
  825. *
  826. XJ = CABS1( X( J ) )
  827. USCAL = TSCAL
  828. REC = ONE / MAX( XMAX, ONE )
  829. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  830. *
  831. * If x(j) could overflow, scale x by 1/(2*XMAX).
  832. *
  833. REC = REC*HALF
  834. IF( NOUNIT ) THEN
  835. TJJS = CONJG( A( J, J ) )*TSCAL
  836. ELSE
  837. TJJS = TSCAL
  838. END IF
  839. TJJ = CABS1( TJJS )
  840. IF( TJJ.GT.ONE ) THEN
  841. *
  842. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  843. *
  844. REC = MIN( ONE, REC*TJJ )
  845. USCAL = CLADIV( USCAL, TJJS )
  846. END IF
  847. IF( REC.LT.ONE ) THEN
  848. CALL CSSCAL( N, REC, X, 1 )
  849. SCALE = SCALE*REC
  850. XMAX = XMAX*REC
  851. END IF
  852. END IF
  853. *
  854. CSUMJ = ZERO
  855. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  856. *
  857. * If the scaling needed for A in the dot product is 1,
  858. * call CDOTC to perform the dot product.
  859. *
  860. IF( UPPER ) THEN
  861. CSUMJ = CDOTC( J-1, A( 1, J ), 1, X, 1 )
  862. ELSE IF( J.LT.N ) THEN
  863. CSUMJ = CDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  864. END IF
  865. ELSE
  866. *
  867. * Otherwise, use in-line code for the dot product.
  868. *
  869. IF( UPPER ) THEN
  870. DO 160 I = 1, J - 1
  871. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  872. $ X( I )
  873. 160 CONTINUE
  874. ELSE IF( J.LT.N ) THEN
  875. DO 170 I = J + 1, N
  876. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  877. $ X( I )
  878. 170 CONTINUE
  879. END IF
  880. END IF
  881. *
  882. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  883. *
  884. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  885. * was not used to scale the dotproduct.
  886. *
  887. X( J ) = X( J ) - CSUMJ
  888. XJ = CABS1( X( J ) )
  889. IF( NOUNIT ) THEN
  890. TJJS = CONJG( A( J, J ) )*TSCAL
  891. ELSE
  892. TJJS = TSCAL
  893. IF( TSCAL.EQ.ONE )
  894. $ GO TO 185
  895. END IF
  896. *
  897. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  898. *
  899. TJJ = CABS1( TJJS )
  900. IF( TJJ.GT.SMLNUM ) THEN
  901. *
  902. * abs(A(j,j)) > SMLNUM:
  903. *
  904. IF( TJJ.LT.ONE ) THEN
  905. IF( XJ.GT.TJJ*BIGNUM ) THEN
  906. *
  907. * Scale X by 1/abs(x(j)).
  908. *
  909. REC = ONE / XJ
  910. CALL CSSCAL( N, REC, X, 1 )
  911. SCALE = SCALE*REC
  912. XMAX = XMAX*REC
  913. END IF
  914. END IF
  915. X( J ) = CLADIV( X( J ), TJJS )
  916. ELSE IF( TJJ.GT.ZERO ) THEN
  917. *
  918. * 0 < abs(A(j,j)) <= SMLNUM:
  919. *
  920. IF( XJ.GT.TJJ*BIGNUM ) THEN
  921. *
  922. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  923. *
  924. REC = ( TJJ*BIGNUM ) / XJ
  925. CALL CSSCAL( N, REC, X, 1 )
  926. SCALE = SCALE*REC
  927. XMAX = XMAX*REC
  928. END IF
  929. X( J ) = CLADIV( X( J ), TJJS )
  930. ELSE
  931. *
  932. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  933. * scale = 0 and compute a solution to A**H *x = 0.
  934. *
  935. DO 180 I = 1, N
  936. X( I ) = ZERO
  937. 180 CONTINUE
  938. X( J ) = ONE
  939. SCALE = ZERO
  940. XMAX = ZERO
  941. END IF
  942. 185 CONTINUE
  943. ELSE
  944. *
  945. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  946. * product has already been divided by 1/A(j,j).
  947. *
  948. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  949. END IF
  950. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  951. 190 CONTINUE
  952. END IF
  953. SCALE = SCALE / TSCAL
  954. END IF
  955. *
  956. * Scale the column norms by 1/TSCAL for return.
  957. *
  958. IF( TSCAL.NE.ONE ) THEN
  959. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  960. END IF
  961. *
  962. RETURN
  963. *
  964. * End of CLATRS
  965. *
  966. END