You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhet22.f 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. *> \brief \b ZHET22
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
  12. * V, LDV, TAU, WORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
  20. * COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  21. * $ V( LDV, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZHET22 generally checks a decomposition of the form
  31. *>
  32. *> A U = U S
  33. *>
  34. *> where A is complex Hermitian, the columns of U are orthonormal,
  35. *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
  36. *> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
  37. *> otherwise the U is expressed as a product of Householder
  38. *> transformations, whose vectors are stored in the array "V" and
  39. *> whose scaling constants are in "TAU"; we shall use the letter
  40. *> "V" to refer to the product of Householder transformations
  41. *> (which should be equal to U).
  42. *>
  43. *> Specifically, if ITYPE=1, then:
  44. *>
  45. *> RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
  46. *> RESULT(2) = | I - U**H U | / ( m ulp )
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \verbatim
  53. *> ITYPE INTEGER
  54. *> Specifies the type of tests to be performed.
  55. *> 1: U expressed as a dense orthogonal matrix:
  56. *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) *and
  57. *> RESULT(2) = | I - U U**H | / ( n ulp )
  58. *>
  59. *> UPLO CHARACTER
  60. *> If UPLO='U', the upper triangle of A will be used and the
  61. *> (strictly) lower triangle will not be referenced. If
  62. *> UPLO='L', the lower triangle of A will be used and the
  63. *> (strictly) upper triangle will not be referenced.
  64. *> Not modified.
  65. *>
  66. *> N INTEGER
  67. *> The size of the matrix. If it is zero, ZHET22 does nothing.
  68. *> It must be at least zero.
  69. *> Not modified.
  70. *>
  71. *> M INTEGER
  72. *> The number of columns of U. If it is zero, ZHET22 does
  73. *> nothing. It must be at least zero.
  74. *> Not modified.
  75. *>
  76. *> KBAND INTEGER
  77. *> The bandwidth of the matrix. It may only be zero or one.
  78. *> If zero, then S is diagonal, and E is not referenced. If
  79. *> one, then S is symmetric tri-diagonal.
  80. *> Not modified.
  81. *>
  82. *> A COMPLEX*16 array, dimension (LDA , N)
  83. *> The original (unfactored) matrix. It is assumed to be
  84. *> symmetric, and only the upper (UPLO='U') or only the lower
  85. *> (UPLO='L') will be referenced.
  86. *> Not modified.
  87. *>
  88. *> LDA INTEGER
  89. *> The leading dimension of A. It must be at least 1
  90. *> and at least N.
  91. *> Not modified.
  92. *>
  93. *> D DOUBLE PRECISION array, dimension (N)
  94. *> The diagonal of the (symmetric tri-) diagonal matrix.
  95. *> Not modified.
  96. *>
  97. *> E DOUBLE PRECISION array, dimension (N)
  98. *> The off-diagonal of the (symmetric tri-) diagonal matrix.
  99. *> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
  100. *> Not referenced if KBAND=0.
  101. *> Not modified.
  102. *>
  103. *> U COMPLEX*16 array, dimension (LDU, N)
  104. *> If ITYPE=1, this contains the orthogonal matrix in
  105. *> the decomposition, expressed as a dense matrix.
  106. *> Not modified.
  107. *>
  108. *> LDU INTEGER
  109. *> The leading dimension of U. LDU must be at least N and
  110. *> at least 1.
  111. *> Not modified.
  112. *>
  113. *> V COMPLEX*16 array, dimension (LDV, N)
  114. *> If ITYPE=2 or 3, the lower triangle of this array contains
  115. *> the Householder vectors used to describe the orthogonal
  116. *> matrix in the decomposition. If ITYPE=1, then it is not
  117. *> referenced.
  118. *> Not modified.
  119. *>
  120. *> LDV INTEGER
  121. *> The leading dimension of V. LDV must be at least N and
  122. *> at least 1.
  123. *> Not modified.
  124. *>
  125. *> TAU COMPLEX*16 array, dimension (N)
  126. *> If ITYPE >= 2, then TAU(j) is the scalar factor of
  127. *> v(j) v(j)**H in the Householder transformation H(j) of
  128. *> the product U = H(1)...H(n-2)
  129. *> If ITYPE < 2, then TAU is not referenced.
  130. *> Not modified.
  131. *>
  132. *> WORK COMPLEX*16 array, dimension (2*N**2)
  133. *> Workspace.
  134. *> Modified.
  135. *>
  136. *> RWORK DOUBLE PRECISION array, dimension (N)
  137. *> Workspace.
  138. *> Modified.
  139. *>
  140. *> RESULT DOUBLE PRECISION array, dimension (2)
  141. *> The values computed by the two tests described above. The
  142. *> values are currently limited to 1/ulp, to avoid overflow.
  143. *> RESULT(1) is always modified. RESULT(2) is modified only
  144. *> if LDU is at least N.
  145. *> Modified.
  146. *> \endverbatim
  147. *
  148. * Authors:
  149. * ========
  150. *
  151. *> \author Univ. of Tennessee
  152. *> \author Univ. of California Berkeley
  153. *> \author Univ. of Colorado Denver
  154. *> \author NAG Ltd.
  155. *
  156. *> \ingroup complex16_eig
  157. *
  158. * =====================================================================
  159. SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
  160. $ V, LDV, TAU, WORK, RWORK, RESULT )
  161. *
  162. * -- LAPACK test routine --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. *
  166. * .. Scalar Arguments ..
  167. CHARACTER UPLO
  168. INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
  169. * ..
  170. * .. Array Arguments ..
  171. DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
  172. COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  173. $ V( LDV, * ), WORK( * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. DOUBLE PRECISION ZERO, ONE
  180. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  181. COMPLEX*16 CZERO, CONE
  182. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  183. $ CONE = ( 1.0D0, 0.0D0 ) )
  184. * ..
  185. * .. Local Scalars ..
  186. INTEGER J, JJ, JJ1, JJ2, NN, NNP1
  187. DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
  188. * ..
  189. * .. External Functions ..
  190. DOUBLE PRECISION DLAMCH, ZLANHE
  191. EXTERNAL DLAMCH, ZLANHE
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL ZGEMM, ZHEMM, ZUNT01
  195. * ..
  196. * .. Intrinsic Functions ..
  197. INTRINSIC DBLE, MAX, MIN
  198. * ..
  199. * .. Executable Statements ..
  200. *
  201. RESULT( 1 ) = ZERO
  202. RESULT( 2 ) = ZERO
  203. IF( N.LE.0 .OR. M.LE.0 )
  204. $ RETURN
  205. *
  206. UNFL = DLAMCH( 'Safe minimum' )
  207. ULP = DLAMCH( 'Precision' )
  208. *
  209. * Do Test 1
  210. *
  211. * Norm of A:
  212. *
  213. ANORM = MAX( ZLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
  214. *
  215. * Compute error matrix:
  216. *
  217. * ITYPE=1: error = U**H A U - S
  218. *
  219. CALL ZHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
  220. $ N )
  221. NN = N*N
  222. NNP1 = NN + 1
  223. CALL ZGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
  224. $ WORK( NNP1 ), N )
  225. DO 10 J = 1, M
  226. JJ = NN + ( J-1 )*N + J
  227. WORK( JJ ) = WORK( JJ ) - D( J )
  228. 10 CONTINUE
  229. IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
  230. DO 20 J = 2, M
  231. JJ1 = NN + ( J-1 )*N + J - 1
  232. JJ2 = NN + ( J-2 )*N + J
  233. WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
  234. WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
  235. 20 CONTINUE
  236. END IF
  237. WNORM = ZLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
  238. *
  239. IF( ANORM.GT.WNORM ) THEN
  240. RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
  241. ELSE
  242. IF( ANORM.LT.ONE ) THEN
  243. RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
  244. ELSE
  245. RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
  246. END IF
  247. END IF
  248. *
  249. * Do Test 2
  250. *
  251. * Compute U**H U - I
  252. *
  253. IF( ITYPE.EQ.1 )
  254. $ CALL ZUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
  255. $ RESULT( 2 ) )
  256. *
  257. RETURN
  258. *
  259. * End of ZHET22
  260. *
  261. END