You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhet21.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. *> \brief \b ZHET21
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
  12. * LDV, TAU, WORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
  20. * COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  21. * $ V( LDV, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZHET21 generally checks a decomposition of the form
  31. *>
  32. *> A = U S U**H
  33. *>
  34. *> where **H means conjugate transpose, A is hermitian, U is unitary, and
  35. *> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if
  36. *> KBAND=1).
  37. *>
  38. *> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
  39. *> expressed as a product of Householder transformations, whose vectors
  40. *> are stored in the array "V" and whose scaling constants are in "TAU".
  41. *> We shall use the letter "V" to refer to the product of Householder
  42. *> transformations (which should be equal to U).
  43. *>
  44. *> Specifically, if ITYPE=1, then:
  45. *>
  46. *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
  47. *> RESULT(2) = | I - U U**H | / ( n ulp )
  48. *>
  49. *> If ITYPE=2, then:
  50. *>
  51. *> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
  52. *>
  53. *> If ITYPE=3, then:
  54. *>
  55. *> RESULT(1) = | I - U V**H | / ( n ulp )
  56. *>
  57. *> For ITYPE > 1, the transformation U is expressed as a product
  58. *> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)**H and each
  59. *> vector v(j) has its first j elements 0 and the remaining n-j elements
  60. *> stored in V(j+1:n,j).
  61. *> \endverbatim
  62. *
  63. * Arguments:
  64. * ==========
  65. *
  66. *> \param[in] ITYPE
  67. *> \verbatim
  68. *> ITYPE is INTEGER
  69. *> Specifies the type of tests to be performed.
  70. *> 1: U expressed as a dense unitary matrix:
  71. *> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
  72. *> RESULT(2) = | I - U U**H | / ( n ulp )
  73. *>
  74. *> 2: U expressed as a product V of Housholder transformations:
  75. *> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
  76. *>
  77. *> 3: U expressed both as a dense unitary matrix and
  78. *> as a product of Housholder transformations:
  79. *> RESULT(1) = | I - U V**H | / ( n ulp )
  80. *> \endverbatim
  81. *>
  82. *> \param[in] UPLO
  83. *> \verbatim
  84. *> UPLO is CHARACTER
  85. *> If UPLO='U', the upper triangle of A and V will be used and
  86. *> the (strictly) lower triangle will not be referenced.
  87. *> If UPLO='L', the lower triangle of A and V will be used and
  88. *> the (strictly) upper triangle will not be referenced.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The size of the matrix. If it is zero, ZHET21 does nothing.
  95. *> It must be at least zero.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] KBAND
  99. *> \verbatim
  100. *> KBAND is INTEGER
  101. *> The bandwidth of the matrix. It may only be zero or one.
  102. *> If zero, then S is diagonal, and E is not referenced. If
  103. *> one, then S is symmetric tri-diagonal.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] A
  107. *> \verbatim
  108. *> A is COMPLEX*16 array, dimension (LDA, N)
  109. *> The original (unfactored) matrix. It is assumed to be
  110. *> hermitian, and only the upper (UPLO='U') or only the lower
  111. *> (UPLO='L') will be referenced.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of A. It must be at least 1
  118. *> and at least N.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] D
  122. *> \verbatim
  123. *> D is DOUBLE PRECISION array, dimension (N)
  124. *> The diagonal of the (symmetric tri-) diagonal matrix.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] E
  128. *> \verbatim
  129. *> E is DOUBLE PRECISION array, dimension (N-1)
  130. *> The off-diagonal of the (symmetric tri-) diagonal matrix.
  131. *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
  132. *> (3,2) element, etc.
  133. *> Not referenced if KBAND=0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] U
  137. *> \verbatim
  138. *> U is COMPLEX*16 array, dimension (LDU, N)
  139. *> If ITYPE=1 or 3, this contains the unitary matrix in
  140. *> the decomposition, expressed as a dense matrix. If ITYPE=2,
  141. *> then it is not referenced.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LDU
  145. *> \verbatim
  146. *> LDU is INTEGER
  147. *> The leading dimension of U. LDU must be at least N and
  148. *> at least 1.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] V
  152. *> \verbatim
  153. *> V is COMPLEX*16 array, dimension (LDV, N)
  154. *> If ITYPE=2 or 3, the columns of this array contain the
  155. *> Householder vectors used to describe the unitary matrix
  156. *> in the decomposition. If UPLO='L', then the vectors are in
  157. *> the lower triangle, if UPLO='U', then in the upper
  158. *> triangle.
  159. *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
  160. *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
  161. *> is set to one, and later reset to its original value, during
  162. *> the course of the calculation.
  163. *> If ITYPE=1, then it is neither referenced nor modified.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] LDV
  167. *> \verbatim
  168. *> LDV is INTEGER
  169. *> The leading dimension of V. LDV must be at least N and
  170. *> at least 1.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] TAU
  174. *> \verbatim
  175. *> TAU is COMPLEX*16 array, dimension (N)
  176. *> If ITYPE >= 2, then TAU(j) is the scalar factor of
  177. *> v(j) v(j)**H in the Householder transformation H(j) of
  178. *> the product U = H(1)...H(n-2)
  179. *> If ITYPE < 2, then TAU is not referenced.
  180. *> \endverbatim
  181. *>
  182. *> \param[out] WORK
  183. *> \verbatim
  184. *> WORK is COMPLEX*16 array, dimension (2*N**2)
  185. *> \endverbatim
  186. *>
  187. *> \param[out] RWORK
  188. *> \verbatim
  189. *> RWORK is DOUBLE PRECISION array, dimension (N)
  190. *> \endverbatim
  191. *>
  192. *> \param[out] RESULT
  193. *> \verbatim
  194. *> RESULT is DOUBLE PRECISION array, dimension (2)
  195. *> The values computed by the two tests described above. The
  196. *> values are currently limited to 1/ulp, to avoid overflow.
  197. *> RESULT(1) is always modified. RESULT(2) is modified only
  198. *> if ITYPE=1.
  199. *> \endverbatim
  200. *
  201. * Authors:
  202. * ========
  203. *
  204. *> \author Univ. of Tennessee
  205. *> \author Univ. of California Berkeley
  206. *> \author Univ. of Colorado Denver
  207. *> \author NAG Ltd.
  208. *
  209. *> \ingroup complex16_eig
  210. *
  211. * =====================================================================
  212. SUBROUTINE ZHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
  213. $ LDV, TAU, WORK, RWORK, RESULT )
  214. *
  215. * -- LAPACK test routine --
  216. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  217. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  218. *
  219. * .. Scalar Arguments ..
  220. CHARACTER UPLO
  221. INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
  222. * ..
  223. * .. Array Arguments ..
  224. DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
  225. COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  226. $ V( LDV, * ), WORK( * )
  227. * ..
  228. *
  229. * =====================================================================
  230. *
  231. * .. Parameters ..
  232. DOUBLE PRECISION ZERO, ONE, TEN
  233. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
  234. COMPLEX*16 CZERO, CONE
  235. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  236. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  237. * ..
  238. * .. Local Scalars ..
  239. LOGICAL LOWER
  240. CHARACTER CUPLO
  241. INTEGER IINFO, J, JCOL, JR, JROW
  242. DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
  243. COMPLEX*16 VSAVE
  244. * ..
  245. * .. External Functions ..
  246. LOGICAL LSAME
  247. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
  248. EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHE
  249. * ..
  250. * .. External Subroutines ..
  251. EXTERNAL ZGEMM, ZHER, ZHER2, ZLACPY, ZLARFY, ZLASET,
  252. $ ZUNM2L, ZUNM2R
  253. * ..
  254. * .. Intrinsic Functions ..
  255. INTRINSIC DBLE, DCMPLX, MAX, MIN
  256. * ..
  257. * .. Executable Statements ..
  258. *
  259. RESULT( 1 ) = ZERO
  260. IF( ITYPE.EQ.1 )
  261. $ RESULT( 2 ) = ZERO
  262. IF( N.LE.0 )
  263. $ RETURN
  264. *
  265. IF( LSAME( UPLO, 'U' ) ) THEN
  266. LOWER = .FALSE.
  267. CUPLO = 'U'
  268. ELSE
  269. LOWER = .TRUE.
  270. CUPLO = 'L'
  271. END IF
  272. *
  273. UNFL = DLAMCH( 'Safe minimum' )
  274. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  275. *
  276. * Some Error Checks
  277. *
  278. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  279. RESULT( 1 ) = TEN / ULP
  280. RETURN
  281. END IF
  282. *
  283. * Do Test 1
  284. *
  285. * Norm of A:
  286. *
  287. IF( ITYPE.EQ.3 ) THEN
  288. ANORM = ONE
  289. ELSE
  290. ANORM = MAX( ZLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL )
  291. END IF
  292. *
  293. * Compute error matrix:
  294. *
  295. IF( ITYPE.EQ.1 ) THEN
  296. *
  297. * ITYPE=1: error = A - U S U**H
  298. *
  299. CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
  300. CALL ZLACPY( CUPLO, N, N, A, LDA, WORK, N )
  301. *
  302. DO 10 J = 1, N
  303. CALL ZHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
  304. 10 CONTINUE
  305. *
  306. IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
  307. DO 20 J = 1, N - 1
  308. CALL ZHER2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
  309. $ U( 1, J+1 ), 1, WORK, N )
  310. 20 CONTINUE
  311. END IF
  312. WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK )
  313. *
  314. ELSE IF( ITYPE.EQ.2 ) THEN
  315. *
  316. * ITYPE=2: error = V S V**H - A
  317. *
  318. CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
  319. *
  320. IF( LOWER ) THEN
  321. WORK( N**2 ) = D( N )
  322. DO 40 J = N - 1, 1, -1
  323. IF( KBAND.EQ.1 ) THEN
  324. WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J )
  325. DO 30 JR = J + 2, N
  326. WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
  327. 30 CONTINUE
  328. END IF
  329. *
  330. VSAVE = V( J+1, J )
  331. V( J+1, J ) = ONE
  332. CALL ZLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
  333. $ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
  334. V( J+1, J ) = VSAVE
  335. WORK( ( N+1 )*( J-1 )+1 ) = D( J )
  336. 40 CONTINUE
  337. ELSE
  338. WORK( 1 ) = D( 1 )
  339. DO 60 J = 1, N - 1
  340. IF( KBAND.EQ.1 ) THEN
  341. WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J )
  342. DO 50 JR = 1, J - 1
  343. WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
  344. 50 CONTINUE
  345. END IF
  346. *
  347. VSAVE = V( J, J+1 )
  348. V( J, J+1 ) = ONE
  349. CALL ZLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
  350. $ WORK( N**2+1 ) )
  351. V( J, J+1 ) = VSAVE
  352. WORK( ( N+1 )*J+1 ) = D( J+1 )
  353. 60 CONTINUE
  354. END IF
  355. *
  356. DO 90 JCOL = 1, N
  357. IF( LOWER ) THEN
  358. DO 70 JROW = JCOL, N
  359. WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
  360. $ - A( JROW, JCOL )
  361. 70 CONTINUE
  362. ELSE
  363. DO 80 JROW = 1, JCOL
  364. WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
  365. $ - A( JROW, JCOL )
  366. 80 CONTINUE
  367. END IF
  368. 90 CONTINUE
  369. WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK )
  370. *
  371. ELSE IF( ITYPE.EQ.3 ) THEN
  372. *
  373. * ITYPE=3: error = U V**H - I
  374. *
  375. IF( N.LT.2 )
  376. $ RETURN
  377. CALL ZLACPY( ' ', N, N, U, LDU, WORK, N )
  378. IF( LOWER ) THEN
  379. CALL ZUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
  380. $ WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
  381. ELSE
  382. CALL ZUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
  383. $ WORK, N, WORK( N**2+1 ), IINFO )
  384. END IF
  385. IF( IINFO.NE.0 ) THEN
  386. RESULT( 1 ) = TEN / ULP
  387. RETURN
  388. END IF
  389. *
  390. DO 100 J = 1, N
  391. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
  392. 100 CONTINUE
  393. *
  394. WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
  395. END IF
  396. *
  397. IF( ANORM.GT.WNORM ) THEN
  398. RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
  399. ELSE
  400. IF( ANORM.LT.ONE ) THEN
  401. RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
  402. ELSE
  403. RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
  404. END IF
  405. END IF
  406. *
  407. * Do Test 2
  408. *
  409. * Compute U U**H - I
  410. *
  411. IF( ITYPE.EQ.1 ) THEN
  412. CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
  413. $ WORK, N )
  414. *
  415. DO 110 J = 1, N
  416. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
  417. 110 CONTINUE
  418. *
  419. RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
  420. $ DBLE( N ) ) / ( N*ULP )
  421. END IF
  422. *
  423. RETURN
  424. *
  425. * End of ZHET21
  426. *
  427. END