You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dckcsd.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. *> \brief \b DCKCSD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH,
  12. * MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK,
  13. * WORK, RWORK, NIN, NOUT, INFO )
  14. *
  15. * .. Scalar Arguments ..
  16. * INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT
  17. * DOUBLE PRECISION THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ),
  21. * $ QVAL( * )
  22. * DOUBLE PRECISION RWORK( * ), THETA( * )
  23. * DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ),
  24. * $ WORK( * ), X( * ), XF( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> DCKCSD tests DORCSD:
  34. *> the CSD for an M-by-M orthogonal matrix X partitioned as
  35. *> [ X11 X12; X21 X22 ]. X11 is P-by-Q.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] NM
  42. *> \verbatim
  43. *> NM is INTEGER
  44. *> The number of values of M contained in the vector MVAL.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] MVAL
  48. *> \verbatim
  49. *> MVAL is INTEGER array, dimension (NM)
  50. *> The values of the matrix row dimension M.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] PVAL
  54. *> \verbatim
  55. *> PVAL is INTEGER array, dimension (NM)
  56. *> The values of the matrix row dimension P.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] QVAL
  60. *> \verbatim
  61. *> QVAL is INTEGER array, dimension (NM)
  62. *> The values of the matrix column dimension Q.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] NMATS
  66. *> \verbatim
  67. *> NMATS is INTEGER
  68. *> The number of matrix types to be tested for each combination
  69. *> of matrix dimensions. If NMATS >= NTYPES (the maximum
  70. *> number of matrix types), then all the different types are
  71. *> generated for testing. If NMATS < NTYPES, another input line
  72. *> is read to get the numbers of the matrix types to be used.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] ISEED
  76. *> \verbatim
  77. *> ISEED is INTEGER array, dimension (4)
  78. *> On entry, the seed of the random number generator. The array
  79. *> elements should be between 0 and 4095, otherwise they will be
  80. *> reduced mod 4096, and ISEED(4) must be odd.
  81. *> On exit, the next seed in the random number sequence after
  82. *> all the test matrices have been generated.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] THRESH
  86. *> \verbatim
  87. *> THRESH is DOUBLE PRECISION
  88. *> The threshold value for the test ratios. A result is
  89. *> included in the output file if RESULT >= THRESH. To have
  90. *> every test ratio printed, use THRESH = 0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] MMAX
  94. *> \verbatim
  95. *> MMAX is INTEGER
  96. *> The maximum value permitted for M, used in dimensioning the
  97. *> work arrays.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] X
  101. *> \verbatim
  102. *> X is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] XF
  106. *> \verbatim
  107. *> XF is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  108. *> \endverbatim
  109. *>
  110. *> \param[out] U1
  111. *> \verbatim
  112. *> U1 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  113. *> \endverbatim
  114. *>
  115. *> \param[out] U2
  116. *> \verbatim
  117. *> U2 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  118. *> \endverbatim
  119. *>
  120. *> \param[out] V1T
  121. *> \verbatim
  122. *> V1T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  123. *> \endverbatim
  124. *>
  125. *> \param[out] V2T
  126. *> \verbatim
  127. *> V2T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
  128. *> \endverbatim
  129. *>
  130. *> \param[out] THETA
  131. *> \verbatim
  132. *> THETA is DOUBLE PRECISION array, dimension (MMAX)
  133. *> \endverbatim
  134. *>
  135. *> \param[out] IWORK
  136. *> \verbatim
  137. *> IWORK is INTEGER array, dimension (MMAX)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] WORK
  141. *> \verbatim
  142. *> WORK is DOUBLE PRECISION array
  143. *> \endverbatim
  144. *>
  145. *> \param[out] RWORK
  146. *> \verbatim
  147. *> RWORK is DOUBLE PRECISION array
  148. *> \endverbatim
  149. *>
  150. *> \param[in] NIN
  151. *> \verbatim
  152. *> NIN is INTEGER
  153. *> The unit number for input.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] NOUT
  157. *> \verbatim
  158. *> NOUT is INTEGER
  159. *> The unit number for output.
  160. *> \endverbatim
  161. *>
  162. *> \param[out] INFO
  163. *> \verbatim
  164. *> INFO is INTEGER
  165. *> = 0 : successful exit
  166. *> > 0 : If DLAROR returns an error code, the absolute value
  167. *> of it is returned.
  168. *> \endverbatim
  169. *
  170. * Authors:
  171. * ========
  172. *
  173. *> \author Univ. of Tennessee
  174. *> \author Univ. of California Berkeley
  175. *> \author Univ. of Colorado Denver
  176. *> \author NAG Ltd.
  177. *
  178. *> \ingroup double_eig
  179. *
  180. * =====================================================================
  181. SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH,
  182. $ MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK,
  183. $ WORK, RWORK, NIN, NOUT, INFO )
  184. *
  185. * -- LAPACK test routine --
  186. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  187. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188. *
  189. * .. Scalar Arguments ..
  190. INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT
  191. DOUBLE PRECISION THRESH
  192. * ..
  193. * .. Array Arguments ..
  194. INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ),
  195. $ QVAL( * )
  196. DOUBLE PRECISION RWORK( * ), THETA( * )
  197. DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ),
  198. $ WORK( * ), X( * ), XF( * )
  199. * ..
  200. *
  201. * =====================================================================
  202. *
  203. * .. Parameters ..
  204. INTEGER NTESTS
  205. PARAMETER ( NTESTS = 15 )
  206. INTEGER NTYPES
  207. PARAMETER ( NTYPES = 4 )
  208. DOUBLE PRECISION GAPDIGIT, ONE, ORTH, TEN, ZERO
  209. PARAMETER ( GAPDIGIT = 18.0D0, ONE = 1.0D0,
  210. $ ORTH = 1.0D-12,
  211. $ TEN = 10.0D0, ZERO = 0.0D0 )
  212. DOUBLE PRECISION PIOVER2
  213. PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
  214. * ..
  215. * .. Local Scalars ..
  216. LOGICAL FIRSTT
  217. CHARACTER*3 PATH
  218. INTEGER I, IINFO, IM, IMAT, J, LDU1, LDU2, LDV1T,
  219. $ LDV2T, LDX, LWORK, M, NFAIL, NRUN, NT, P, Q, R
  220. * ..
  221. * .. Local Arrays ..
  222. LOGICAL DOTYPE( NTYPES )
  223. DOUBLE PRECISION RESULT( NTESTS )
  224. * ..
  225. * .. External Subroutines ..
  226. EXTERNAL ALAHDG, ALAREQ, ALASUM, DCSDTS, DLACSG, DLAROR,
  227. $ DLASET, DROT
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC ABS, MIN
  231. * ..
  232. * .. External Functions ..
  233. DOUBLE PRECISION DLARAN, DLARND
  234. EXTERNAL DLARAN, DLARND
  235. * ..
  236. * .. Executable Statements ..
  237. *
  238. * Initialize constants and the random number seed.
  239. *
  240. PATH( 1: 3 ) = 'CSD'
  241. INFO = 0
  242. NRUN = 0
  243. NFAIL = 0
  244. FIRSTT = .TRUE.
  245. CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
  246. LDX = MMAX
  247. LDU1 = MMAX
  248. LDU2 = MMAX
  249. LDV1T = MMAX
  250. LDV2T = MMAX
  251. LWORK = MMAX*MMAX
  252. *
  253. * Do for each value of M in MVAL.
  254. *
  255. DO 30 IM = 1, NM
  256. M = MVAL( IM )
  257. P = PVAL( IM )
  258. Q = QVAL( IM )
  259. *
  260. DO 20 IMAT = 1, NTYPES
  261. *
  262. * Do the tests only if DOTYPE( IMAT ) is true.
  263. *
  264. IF( .NOT.DOTYPE( IMAT ) )
  265. $ GO TO 20
  266. *
  267. * Generate X
  268. *
  269. IF( IMAT.EQ.1 ) THEN
  270. CALL DLAROR( 'L', 'I', M, M, X, LDX, ISEED, WORK, IINFO )
  271. IF( M .NE. 0 .AND. IINFO .NE. 0 ) THEN
  272. WRITE( NOUT, FMT = 9999 ) M, IINFO
  273. INFO = ABS( IINFO )
  274. GO TO 20
  275. END IF
  276. ELSE IF( IMAT.EQ.2 ) THEN
  277. R = MIN( P, M-P, Q, M-Q )
  278. DO I = 1, R
  279. THETA(I) = PIOVER2 * DLARND( 1, ISEED )
  280. END DO
  281. CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
  282. DO I = 1, M
  283. DO J = 1, M
  284. X(I+(J-1)*LDX) = X(I+(J-1)*LDX) +
  285. $ ORTH*DLARND(2,ISEED)
  286. END DO
  287. END DO
  288. ELSE IF( IMAT.EQ.3 ) THEN
  289. R = MIN( P, M-P, Q, M-Q )
  290. DO I = 1, R+1
  291. THETA(I) = TEN**(-DLARND(1,ISEED)*GAPDIGIT)
  292. END DO
  293. DO I = 2, R+1
  294. THETA(I) = THETA(I-1) + THETA(I)
  295. END DO
  296. DO I = 1, R
  297. THETA(I) = PIOVER2 * THETA(I) / THETA(R+1)
  298. END DO
  299. CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
  300. ELSE
  301. CALL DLASET( 'F', M, M, ZERO, ONE, X, LDX )
  302. DO I = 1, M
  303. J = INT( DLARAN( ISEED ) * M ) + 1
  304. IF( J .NE. I ) THEN
  305. CALL DROT( M, X(1+(I-1)*LDX), 1, X(1+(J-1)*LDX), 1,
  306. $ ZERO, ONE )
  307. END IF
  308. END DO
  309. END IF
  310. *
  311. NT = 15
  312. *
  313. CALL DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
  314. $ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
  315. $ RWORK, RESULT )
  316. *
  317. * Print information about the tests that did not
  318. * pass the threshold.
  319. *
  320. DO 10 I = 1, NT
  321. IF( RESULT( I ).GE.THRESH ) THEN
  322. IF( NFAIL.EQ.0 .AND. FIRSTT ) THEN
  323. FIRSTT = .FALSE.
  324. CALL ALAHDG( NOUT, PATH )
  325. END IF
  326. WRITE( NOUT, FMT = 9998 )M, P, Q, IMAT, I,
  327. $ RESULT( I )
  328. NFAIL = NFAIL + 1
  329. END IF
  330. 10 CONTINUE
  331. NRUN = NRUN + NT
  332. 20 CONTINUE
  333. 30 CONTINUE
  334. *
  335. * Print a summary of the results.
  336. *
  337. CALL ALASUM( PATH, NOUT, NFAIL, NRUN, 0 )
  338. *
  339. 9999 FORMAT( ' DLAROR in DCKCSD: M = ', I5, ', INFO = ', I15 )
  340. 9998 FORMAT( ' M=', I4, ' P=', I4, ', Q=', I4, ', type ', I2,
  341. $ ', test ', I2, ', ratio=', G13.6 )
  342. RETURN
  343. *
  344. * End of DCKCSD
  345. *
  346. END
  347. *
  348. *
  349. *
  350. SUBROUTINE DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
  351. IMPLICIT NONE
  352. *
  353. INTEGER LDX, M, P, Q
  354. INTEGER ISEED( 4 )
  355. DOUBLE PRECISION THETA( * )
  356. DOUBLE PRECISION WORK( * ), X( LDX, * )
  357. *
  358. DOUBLE PRECISION ONE, ZERO
  359. PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
  360. *
  361. INTEGER I, INFO, R
  362. *
  363. R = MIN( P, M-P, Q, M-Q )
  364. *
  365. CALL DLASET( 'Full', M, M, ZERO, ZERO, X, LDX )
  366. *
  367. DO I = 1, MIN(P,Q)-R
  368. X(I,I) = ONE
  369. END DO
  370. DO I = 1, R
  371. X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) = COS(THETA(I))
  372. END DO
  373. DO I = 1, MIN(P,M-Q)-R
  374. X(P-I+1,M-I+1) = -ONE
  375. END DO
  376. DO I = 1, R
  377. X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
  378. $ -SIN(THETA(R-I+1))
  379. END DO
  380. DO I = 1, MIN(M-P,Q)-R
  381. X(M-I+1,Q-I+1) = ONE
  382. END DO
  383. DO I = 1, R
  384. X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
  385. $ SIN(THETA(R-I+1))
  386. END DO
  387. DO I = 1, MIN(M-P,M-Q)-R
  388. X(P+I,Q+I) = ONE
  389. END DO
  390. DO I = 1, R
  391. X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
  392. $ COS(THETA(I))
  393. END DO
  394. CALL DLAROR( 'Left', 'No init', P, M, X, LDX, ISEED, WORK, INFO )
  395. CALL DLAROR( 'Left', 'No init', M-P, M, X(P+1,1), LDX,
  396. $ ISEED, WORK, INFO )
  397. CALL DLAROR( 'Right', 'No init', M, Q, X, LDX, ISEED,
  398. $ WORK, INFO )
  399. CALL DLAROR( 'Right', 'No init', M, M-Q,
  400. $ X(1,Q+1), LDX, ISEED, WORK, INFO )
  401. *
  402. END