You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyl01.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. *> \brief \b CSYL01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CSYL01( THRESH, NFAIL, RMAX, NINFO, KNT )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER KNT
  15. * REAL THRESH
  16. * ..
  17. * .. Array Arguments ..
  18. * INTEGER NFAIL( 3 ), NINFO( 2 )
  19. * REAL RMAX( 2 )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CSYL01 tests CTRSYL and CTRSYL3, routines for solving the Sylvester matrix
  29. *> equation
  30. *>
  31. *> op(A)*X + ISGN*X*op(B) = scale*C,
  32. *>
  33. *> where op(A) and op(B) are both upper triangular form, op() represents an
  34. *> optional conjugate transpose, and ISGN can be -1 or +1. Scale is an output
  35. *> less than or equal to 1, chosen to avoid overflow in X.
  36. *>
  37. *> The test code verifies that the following residual does not exceed
  38. *> the provided threshold:
  39. *>
  40. *> norm(op(A)*X + ISGN*X*op(B) - scale*C) /
  41. *> (EPS*max(norm(A),norm(B))*norm(X))
  42. *>
  43. *> This routine complements CGET35 by testing with larger,
  44. *> random matrices, of which some require rescaling of X to avoid overflow.
  45. *>
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] THRESH
  52. *> \verbatim
  53. *> THRESH is REAL
  54. *> A test will count as "failed" if the residual, computed as
  55. *> described above, exceeds THRESH.
  56. *> \endverbatim
  57. *>
  58. *> \param[out] NFAIL
  59. *> \verbatim
  60. *> NFAIL is INTEGER array, dimension (3)
  61. *> NFAIL(1) = No. of times residual CTRSYL exceeds threshold THRESH
  62. *> NFAIL(2) = No. of times residual CTRSYL3 exceeds threshold THRESH
  63. *> NFAIL(3) = No. of times CTRSYL3 and CTRSYL deviate
  64. *> \endverbatim
  65. *>
  66. *> \param[out] RMAX
  67. *> \verbatim
  68. *> RMAX is DOUBLE PRECISION array, dimension (2)
  69. *> RMAX(1) = Value of the largest test ratio of CTRSYL
  70. *> RMAX(2) = Value of the largest test ratio of CTRSYL3
  71. *> \endverbatim
  72. *>
  73. *> \param[out] NINFO
  74. *> \verbatim
  75. *> NINFO is INTEGER array, dimension (2)
  76. *> NINFO(1) = No. of times CTRSYL where INFO is nonzero
  77. *> NINFO(2) = No. of times CTRSYL3 where INFO is nonzero
  78. *> \endverbatim
  79. *>
  80. *> \param[out] KNT
  81. *> \verbatim
  82. *> KNT is INTEGER
  83. *> Total number of examples tested.
  84. *> \endverbatim
  85. *
  86. * -- LAPACK test routine --
  87. SUBROUTINE CSYL01( THRESH, NFAIL, RMAX, NINFO, KNT )
  88. IMPLICIT NONE
  89. *
  90. * -- LAPACK test routine --
  91. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  92. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  93. *
  94. * .. Scalar Arguments ..
  95. INTEGER KNT
  96. REAL THRESH
  97. * ..
  98. * .. Array Arguments ..
  99. INTEGER NFAIL( 3 ), NINFO( 2 )
  100. REAL RMAX( 2 )
  101. * ..
  102. *
  103. * =====================================================================
  104. * ..
  105. * .. Parameters ..
  106. COMPLEX CONE
  107. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  108. REAL ONE, ZERO
  109. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  110. INTEGER MAXM, MAXN, LDSWORK
  111. PARAMETER ( MAXM = 101, MAXN = 138, LDSWORK = 18 )
  112. * ..
  113. * .. Local Scalars ..
  114. CHARACTER TRANA, TRANB
  115. INTEGER I, INFO, IINFO, ISGN, ITRANA, ITRANB, J, KLA,
  116. $ KUA, KLB, KUB, M, N
  117. REAL ANRM, BNRM, BIGNUM, EPS, RES, RES1,
  118. $ SCALE, SCALE3, SMLNUM, TNRM, XNRM
  119. COMPLEX RMUL
  120. * ..
  121. * .. Local Arrays ..
  122. COMPLEX DUML( MAXM ), DUMR( MAXN ),
  123. $ D( MAX( MAXM, MAXN ) )
  124. REAL DUM( MAXN ), VM( 2 )
  125. INTEGER ISEED( 4 ), IWORK( MAXM + MAXN + 2 )
  126. * ..
  127. * .. Allocatable Arrays ..
  128. INTEGER AllocateStatus
  129. COMPLEX, DIMENSION(:,:), ALLOCATABLE :: A, B, C, CC, X
  130. REAL, DIMENSION(:,:), ALLOCATABLE :: SWORK
  131. * ..
  132. * .. External Functions ..
  133. LOGICAL SISNAN
  134. REAL SLAMCH, CLANGE
  135. EXTERNAL SISNAN, SLAMCH, CLANGE
  136. * ..
  137. * .. External Subroutines ..
  138. EXTERNAL CLATMR, CLACPY, CGEMM, CTRSYL, CTRSYL3
  139. * ..
  140. * .. Intrinsic Functions ..
  141. INTRINSIC ABS, REAL, MAX
  142. * ..
  143. * .. Allocate memory dynamically ..
  144. ALLOCATE ( A( MAXM, MAXM ), STAT = AllocateStatus )
  145. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  146. ALLOCATE ( B( MAXN, MAXN ), STAT = AllocateStatus )
  147. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  148. ALLOCATE ( C( MAXM, MAXN ), STAT = AllocateStatus )
  149. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  150. ALLOCATE ( CC( MAXM, MAXN ), STAT = AllocateStatus )
  151. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  152. ALLOCATE ( X( MAXM, MAXN ), STAT = AllocateStatus )
  153. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  154. ALLOCATE ( SWORK( LDSWORK, 54 ), STAT = AllocateStatus )
  155. IF( AllocateStatus /= 0 ) STOP "*** Not enough memory ***"
  156. * ..
  157. * .. Executable Statements ..
  158. *
  159. * Get machine parameters
  160. *
  161. EPS = SLAMCH( 'P' )
  162. SMLNUM = SLAMCH( 'S' ) / EPS
  163. BIGNUM = ONE / SMLNUM
  164. *
  165. * Expect INFO = 0
  166. VM( 1 ) = ONE
  167. * Expect INFO = 1
  168. VM( 2 ) = 0.5E+0
  169. *
  170. * Begin test loop
  171. *
  172. NINFO( 1 ) = 0
  173. NINFO( 2 ) = 0
  174. NFAIL( 1 ) = 0
  175. NFAIL( 2 ) = 0
  176. NFAIL( 3 ) = 0
  177. RMAX( 1 ) = ZERO
  178. RMAX( 2 ) = ZERO
  179. KNT = 0
  180. ISEED( 1 ) = 1
  181. ISEED( 2 ) = 1
  182. ISEED( 3 ) = 1
  183. ISEED( 4 ) = 1
  184. SCALE = ONE
  185. SCALE3 = ONE
  186. DO J = 1, 2
  187. DO ISGN = -1, 1, 2
  188. * Reset seed (overwritten by LATMR)
  189. ISEED( 1 ) = 1
  190. ISEED( 2 ) = 1
  191. ISEED( 3 ) = 1
  192. ISEED( 4 ) = 1
  193. DO M = 32, MAXM, 23
  194. KLA = 0
  195. KUA = M - 1
  196. CALL CLATMR( M, M, 'S', ISEED, 'N', D,
  197. $ 6, ONE, CONE, 'T', 'N',
  198. $ DUML, 1, ONE, DUMR, 1, ONE,
  199. $ 'N', IWORK, KLA, KUA, ZERO,
  200. $ ONE, 'NO', A, MAXM, IWORK,
  201. $ IINFO )
  202. DO I = 1, M
  203. A( I, I ) = A( I, I ) * VM( J )
  204. END DO
  205. ANRM = CLANGE( 'M', M, M, A, MAXM, DUM )
  206. DO N = 51, MAXN, 29
  207. KLB = 0
  208. KUB = N - 1
  209. CALL CLATMR( N, N, 'S', ISEED, 'N', D,
  210. $ 6, ONE, CONE, 'T', 'N',
  211. $ DUML, 1, ONE, DUMR, 1, ONE,
  212. $ 'N', IWORK, KLB, KUB, ZERO,
  213. $ ONE, 'NO', B, MAXN, IWORK,
  214. $ IINFO )
  215. DO I = 1, N
  216. B( I, I ) = B( I, I ) * VM ( J )
  217. END DO
  218. BNRM = CLANGE( 'M', N, N, B, MAXN, DUM )
  219. TNRM = MAX( ANRM, BNRM )
  220. CALL CLATMR( M, N, 'S', ISEED, 'N', D,
  221. $ 6, ONE, CONE, 'T', 'N',
  222. $ DUML, 1, ONE, DUMR, 1, ONE,
  223. $ 'N', IWORK, M, N, ZERO, ONE,
  224. $ 'NO', C, MAXM, IWORK, IINFO )
  225. DO ITRANA = 1, 2
  226. IF( ITRANA.EQ.1 )
  227. $ TRANA = 'N'
  228. IF( ITRANA.EQ.2 )
  229. $ TRANA = 'C'
  230. DO ITRANB = 1, 2
  231. IF( ITRANB.EQ.1 )
  232. $ TRANB = 'N'
  233. IF( ITRANB.EQ.2 )
  234. $ TRANB = 'C'
  235. KNT = KNT + 1
  236. *
  237. CALL CLACPY( 'All', M, N, C, MAXM, X, MAXM)
  238. CALL CLACPY( 'All', M, N, C, MAXM, CC, MAXM)
  239. CALL CTRSYL( TRANA, TRANB, ISGN, M, N,
  240. $ A, MAXM, B, MAXN, X, MAXM,
  241. $ SCALE, IINFO )
  242. IF( IINFO.NE.0 )
  243. $ NINFO( 1 ) = NINFO( 1 ) + 1
  244. XNRM = CLANGE( 'M', M, N, X, MAXM, DUM )
  245. RMUL = CONE
  246. IF( XNRM.GT.ONE .AND. TNRM.GT.ONE ) THEN
  247. IF( XNRM.GT.BIGNUM / TNRM ) THEN
  248. RMUL = CONE / MAX( XNRM, TNRM )
  249. END IF
  250. END IF
  251. CALL CGEMM( TRANA, 'N', M, N, M, RMUL,
  252. $ A, MAXM, X, MAXM, -SCALE*RMUL,
  253. $ CC, MAXM )
  254. CALL CGEMM( 'N', TRANB, M, N, N,
  255. $ REAL( ISGN )*RMUL, X, MAXM, B,
  256. $ MAXN, CONE, CC, MAXM )
  257. RES1 = CLANGE( 'M', M, N, CC, MAXM, DUM )
  258. RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
  259. $ ( ( ABS( RMUL )*TNRM )*EPS )*XNRM )
  260. IF( RES.GT.THRESH )
  261. $ NFAIL( 1 ) = NFAIL( 1 ) + 1
  262. IF( RES.GT.RMAX( 1 ) )
  263. $ RMAX( 1 ) = RES
  264. *
  265. CALL CLACPY( 'All', M, N, C, MAXM, X, MAXM )
  266. CALL CLACPY( 'All', M, N, C, MAXM, CC, MAXM )
  267. CALL CTRSYL3( TRANA, TRANB, ISGN, M, N,
  268. $ A, MAXM, B, MAXN, X, MAXM,
  269. $ SCALE3, SWORK, LDSWORK, INFO)
  270. IF( INFO.NE.0 )
  271. $ NINFO( 2 ) = NINFO( 2 ) + 1
  272. XNRM = CLANGE( 'M', M, N, X, MAXM, DUM )
  273. RMUL = CONE
  274. IF( XNRM.GT.ONE .AND. TNRM.GT.ONE ) THEN
  275. IF( XNRM.GT.BIGNUM / TNRM ) THEN
  276. RMUL = CONE / MAX( XNRM, TNRM )
  277. END IF
  278. END IF
  279. CALL CGEMM( TRANA, 'N', M, N, M, RMUL,
  280. $ A, MAXM, X, MAXM, -SCALE3*RMUL,
  281. $ CC, MAXM )
  282. CALL CGEMM( 'N', TRANB, M, N, N,
  283. $ REAL( ISGN )*RMUL, X, MAXM, B,
  284. $ MAXN, CONE, CC, MAXM )
  285. RES1 = CLANGE( 'M', M, N, CC, MAXM, DUM )
  286. RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
  287. $ ( ( ABS( RMUL )*TNRM )*EPS )*XNRM )
  288. * Verify that TRSYL3 only flushes if TRSYL flushes (but
  289. * there may be cases where TRSYL3 avoid flushing).
  290. IF( SCALE3.EQ.ZERO .AND. SCALE.GT.ZERO .OR.
  291. $ IINFO.NE.INFO ) THEN
  292. NFAIL( 3 ) = NFAIL( 3 ) + 1
  293. END IF
  294. IF( RES.GT.THRESH .OR. SISNAN( RES ) )
  295. $ NFAIL( 2 ) = NFAIL( 2 ) + 1
  296. IF( RES.GT.RMAX( 2 ) )
  297. $ RMAX( 2 ) = RES
  298. END DO
  299. END DO
  300. END DO
  301. END DO
  302. END DO
  303. END DO
  304. *
  305. DEALLOCATE (A, STAT = AllocateStatus)
  306. DEALLOCATE (B, STAT = AllocateStatus)
  307. DEALLOCATE (C, STAT = AllocateStatus)
  308. DEALLOCATE (CC, STAT = AllocateStatus)
  309. DEALLOCATE (X, STAT = AllocateStatus)
  310. DEALLOCATE (SWORK, STAT = AllocateStatus)
  311. *
  312. RETURN
  313. *
  314. * End of CSYL01
  315. *
  316. END