You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgebak.f 7.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. *> \brief \b ZGEBAK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGEBAK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebak.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebak.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebak.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOB, SIDE
  26. * INTEGER IHI, ILO, INFO, LDV, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION SCALE( * )
  30. * COMPLEX*16 V( LDV, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZGEBAK forms the right or left eigenvectors of a complex general
  40. *> matrix by backward transformation on the computed eigenvectors of the
  41. *> balanced matrix output by ZGEBAL.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] JOB
  48. *> \verbatim
  49. *> JOB is CHARACTER*1
  50. *> Specifies the type of backward transformation required:
  51. *> = 'N', do nothing, return immediately;
  52. *> = 'P', do backward transformation for permutation only;
  53. *> = 'S', do backward transformation for scaling only;
  54. *> = 'B', do backward transformations for both permutation and
  55. *> scaling.
  56. *> JOB must be the same as the argument JOB supplied to ZGEBAL.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] SIDE
  60. *> \verbatim
  61. *> SIDE is CHARACTER*1
  62. *> = 'R': V contains right eigenvectors;
  63. *> = 'L': V contains left eigenvectors.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] N
  67. *> \verbatim
  68. *> N is INTEGER
  69. *> The number of rows of the matrix V. N >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] ILO
  73. *> \verbatim
  74. *> ILO is INTEGER
  75. *> \endverbatim
  76. *>
  77. *> \param[in] IHI
  78. *> \verbatim
  79. *> IHI is INTEGER
  80. *> The integers ILO and IHI determined by ZGEBAL.
  81. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] SCALE
  85. *> \verbatim
  86. *> SCALE is DOUBLE PRECISION array, dimension (N)
  87. *> Details of the permutation and scaling factors, as returned
  88. *> by ZGEBAL.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] M
  92. *> \verbatim
  93. *> M is INTEGER
  94. *> The number of columns of the matrix V. M >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] V
  98. *> \verbatim
  99. *> V is COMPLEX*16 array, dimension (LDV,M)
  100. *> On entry, the matrix of right or left eigenvectors to be
  101. *> transformed, as returned by ZHSEIN or ZTREVC.
  102. *> On exit, V is overwritten by the transformed eigenvectors.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDV
  106. *> \verbatim
  107. *> LDV is INTEGER
  108. *> The leading dimension of the array V. LDV >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \date December 2016
  127. *
  128. *> \ingroup complex16GEcomputational
  129. *
  130. * =====================================================================
  131. SUBROUTINE ZGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV,
  132. $ INFO )
  133. *
  134. * -- LAPACK computational routine (version 3.7.0) --
  135. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  136. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  137. * December 2016
  138. *
  139. * .. Scalar Arguments ..
  140. CHARACTER JOB, SIDE
  141. INTEGER IHI, ILO, INFO, LDV, M, N
  142. * ..
  143. * .. Array Arguments ..
  144. DOUBLE PRECISION SCALE( * )
  145. COMPLEX*16 V( LDV, * )
  146. * ..
  147. *
  148. * =====================================================================
  149. *
  150. * .. Parameters ..
  151. DOUBLE PRECISION ONE
  152. PARAMETER ( ONE = 1.0D+0 )
  153. * ..
  154. * .. Local Scalars ..
  155. LOGICAL LEFTV, RIGHTV
  156. INTEGER I, II, K
  157. DOUBLE PRECISION S
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. EXTERNAL LSAME
  162. * ..
  163. * .. External Subroutines ..
  164. EXTERNAL XERBLA, ZDSCAL, ZSWAP
  165. * ..
  166. * .. Intrinsic Functions ..
  167. INTRINSIC MAX, MIN
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. * Decode and Test the input parameters
  172. *
  173. RIGHTV = LSAME( SIDE, 'R' )
  174. LEFTV = LSAME( SIDE, 'L' )
  175. *
  176. INFO = 0
  177. IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  178. $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  179. INFO = -1
  180. ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  181. INFO = -2
  182. ELSE IF( N.LT.0 ) THEN
  183. INFO = -3
  184. ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
  185. INFO = -4
  186. ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
  187. INFO = -5
  188. ELSE IF( M.LT.0 ) THEN
  189. INFO = -7
  190. ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
  191. INFO = -9
  192. END IF
  193. IF( INFO.NE.0 ) THEN
  194. CALL XERBLA( 'ZGEBAK', -INFO )
  195. RETURN
  196. END IF
  197. *
  198. * Quick return if possible
  199. *
  200. IF( N.EQ.0 )
  201. $ RETURN
  202. IF( M.EQ.0 )
  203. $ RETURN
  204. IF( LSAME( JOB, 'N' ) )
  205. $ RETURN
  206. *
  207. IF( ILO.EQ.IHI )
  208. $ GO TO 30
  209. *
  210. * Backward balance
  211. *
  212. IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
  213. *
  214. IF( RIGHTV ) THEN
  215. DO 10 I = ILO, IHI
  216. S = SCALE( I )
  217. CALL ZDSCAL( M, S, V( I, 1 ), LDV )
  218. 10 CONTINUE
  219. END IF
  220. *
  221. IF( LEFTV ) THEN
  222. DO 20 I = ILO, IHI
  223. S = ONE / SCALE( I )
  224. CALL ZDSCAL( M, S, V( I, 1 ), LDV )
  225. 20 CONTINUE
  226. END IF
  227. *
  228. END IF
  229. *
  230. * Backward permutation
  231. *
  232. * For I = ILO-1 step -1 until 1,
  233. * IHI+1 step 1 until N do --
  234. *
  235. 30 CONTINUE
  236. IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
  237. IF( RIGHTV ) THEN
  238. DO 40 II = 1, N
  239. I = II
  240. IF( I.GE.ILO .AND. I.LE.IHI )
  241. $ GO TO 40
  242. IF( I.LT.ILO )
  243. $ I = ILO - II
  244. K = SCALE( I )
  245. IF( K.EQ.I )
  246. $ GO TO 40
  247. CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  248. 40 CONTINUE
  249. END IF
  250. *
  251. IF( LEFTV ) THEN
  252. DO 50 II = 1, N
  253. I = II
  254. IF( I.GE.ILO .AND. I.LE.IHI )
  255. $ GO TO 50
  256. IF( I.LT.ILO )
  257. $ I = ILO - II
  258. K = SCALE( I )
  259. IF( K.EQ.I )
  260. $ GO TO 50
  261. CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  262. 50 CONTINUE
  263. END IF
  264. END IF
  265. *
  266. RETURN
  267. *
  268. * End of ZGEBAK
  269. *
  270. END