You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtfttp.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. *> \brief \b DTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTFTTP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfttp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfttp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfttp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTFTTP copies a triangular matrix A from rectangular full packed
  38. *> format (TF) to standard packed format (TP).
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF is in Normal format;
  48. *> = 'T': ARF is in Transpose format;
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] ARF
  65. *> \verbatim
  66. *> ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
  67. *> On entry, the upper or lower triangular matrix A stored in
  68. *> RFP format. For a further discussion see Notes below.
  69. *> \endverbatim
  70. *>
  71. *> \param[out] AP
  72. *> \verbatim
  73. *> AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
  74. *> On exit, the upper or lower triangular matrix A, packed
  75. *> columnwise in a linear array. The j-th column of A is stored
  76. *> in the array AP as follows:
  77. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  78. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  79. *> \endverbatim
  80. *>
  81. *> \param[out] INFO
  82. *> \verbatim
  83. *> INFO is INTEGER
  84. *> = 0: successful exit
  85. *> < 0: if INFO = -i, the i-th argument had an illegal value
  86. *> \endverbatim
  87. *
  88. * Authors:
  89. * ========
  90. *
  91. *> \author Univ. of Tennessee
  92. *> \author Univ. of California Berkeley
  93. *> \author Univ. of Colorado Denver
  94. *> \author NAG Ltd.
  95. *
  96. *> \date December 2016
  97. *
  98. *> \ingroup doubleOTHERcomputational
  99. *
  100. *> \par Further Details:
  101. * =====================
  102. *>
  103. *> \verbatim
  104. *>
  105. *> We first consider Rectangular Full Packed (RFP) Format when N is
  106. *> even. We give an example where N = 6.
  107. *>
  108. *> AP is Upper AP is Lower
  109. *>
  110. *> 00 01 02 03 04 05 00
  111. *> 11 12 13 14 15 10 11
  112. *> 22 23 24 25 20 21 22
  113. *> 33 34 35 30 31 32 33
  114. *> 44 45 40 41 42 43 44
  115. *> 55 50 51 52 53 54 55
  116. *>
  117. *>
  118. *> Let TRANSR = 'N'. RFP holds AP as follows:
  119. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  120. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  121. *> the transpose of the first three columns of AP upper.
  122. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  123. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  124. *> the transpose of the last three columns of AP lower.
  125. *> This covers the case N even and TRANSR = 'N'.
  126. *>
  127. *> RFP A RFP A
  128. *>
  129. *> 03 04 05 33 43 53
  130. *> 13 14 15 00 44 54
  131. *> 23 24 25 10 11 55
  132. *> 33 34 35 20 21 22
  133. *> 00 44 45 30 31 32
  134. *> 01 11 55 40 41 42
  135. *> 02 12 22 50 51 52
  136. *>
  137. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  138. *> transpose of RFP A above. One therefore gets:
  139. *>
  140. *>
  141. *> RFP A RFP A
  142. *>
  143. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  144. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  145. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  146. *>
  147. *>
  148. *> We then consider Rectangular Full Packed (RFP) Format when N is
  149. *> odd. We give an example where N = 5.
  150. *>
  151. *> AP is Upper AP is Lower
  152. *>
  153. *> 00 01 02 03 04 00
  154. *> 11 12 13 14 10 11
  155. *> 22 23 24 20 21 22
  156. *> 33 34 30 31 32 33
  157. *> 44 40 41 42 43 44
  158. *>
  159. *>
  160. *> Let TRANSR = 'N'. RFP holds AP as follows:
  161. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  162. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  163. *> the transpose of the first two columns of AP upper.
  164. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  165. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  166. *> the transpose of the last two columns of AP lower.
  167. *> This covers the case N odd and TRANSR = 'N'.
  168. *>
  169. *> RFP A RFP A
  170. *>
  171. *> 02 03 04 00 33 43
  172. *> 12 13 14 10 11 44
  173. *> 22 23 24 20 21 22
  174. *> 00 33 34 30 31 32
  175. *> 01 11 44 40 41 42
  176. *>
  177. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  178. *> transpose of RFP A above. One therefore gets:
  179. *>
  180. *> RFP A RFP A
  181. *>
  182. *> 02 12 22 00 01 00 10 20 30 40 50
  183. *> 03 13 23 33 11 33 11 21 31 41 51
  184. *> 04 14 24 34 44 43 44 22 32 42 52
  185. *> \endverbatim
  186. *>
  187. * =====================================================================
  188. SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
  189. *
  190. * -- LAPACK computational routine (version 3.7.0) --
  191. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  192. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193. * December 2016
  194. *
  195. * .. Scalar Arguments ..
  196. CHARACTER TRANSR, UPLO
  197. INTEGER INFO, N
  198. * ..
  199. * .. Array Arguments ..
  200. DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
  201. * ..
  202. *
  203. * =====================================================================
  204. *
  205. * .. Parameters ..
  206. * ..
  207. * .. Local Scalars ..
  208. LOGICAL LOWER, NISODD, NORMALTRANSR
  209. INTEGER N1, N2, K, NT
  210. INTEGER I, J, IJ
  211. INTEGER IJP, JP, LDA, JS
  212. * ..
  213. * .. External Functions ..
  214. LOGICAL LSAME
  215. EXTERNAL LSAME
  216. * ..
  217. * .. External Subroutines ..
  218. EXTERNAL XERBLA
  219. * ..
  220. * .. Executable Statements ..
  221. *
  222. * Test the input parameters.
  223. *
  224. INFO = 0
  225. NORMALTRANSR = LSAME( TRANSR, 'N' )
  226. LOWER = LSAME( UPLO, 'L' )
  227. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  228. INFO = -1
  229. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  230. INFO = -2
  231. ELSE IF( N.LT.0 ) THEN
  232. INFO = -3
  233. END IF
  234. IF( INFO.NE.0 ) THEN
  235. CALL XERBLA( 'DTFTTP', -INFO )
  236. RETURN
  237. END IF
  238. *
  239. * Quick return if possible
  240. *
  241. IF( N.EQ.0 )
  242. $ RETURN
  243. *
  244. IF( N.EQ.1 ) THEN
  245. IF( NORMALTRANSR ) THEN
  246. AP( 0 ) = ARF( 0 )
  247. ELSE
  248. AP( 0 ) = ARF( 0 )
  249. END IF
  250. RETURN
  251. END IF
  252. *
  253. * Size of array ARF(0:NT-1)
  254. *
  255. NT = N*( N+1 ) / 2
  256. *
  257. * Set N1 and N2 depending on LOWER
  258. *
  259. IF( LOWER ) THEN
  260. N2 = N / 2
  261. N1 = N - N2
  262. ELSE
  263. N1 = N / 2
  264. N2 = N - N1
  265. END IF
  266. *
  267. * If N is odd, set NISODD = .TRUE.
  268. * If N is even, set K = N/2 and NISODD = .FALSE.
  269. *
  270. * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  271. * where noe = 0 if n is even, noe = 1 if n is odd
  272. *
  273. IF( MOD( N, 2 ).EQ.0 ) THEN
  274. K = N / 2
  275. NISODD = .FALSE.
  276. LDA = N + 1
  277. ELSE
  278. NISODD = .TRUE.
  279. LDA = N
  280. END IF
  281. *
  282. * ARF^C has lda rows and n+1-noe cols
  283. *
  284. IF( .NOT.NORMALTRANSR )
  285. $ LDA = ( N+1 ) / 2
  286. *
  287. * start execution: there are eight cases
  288. *
  289. IF( NISODD ) THEN
  290. *
  291. * N is odd
  292. *
  293. IF( NORMALTRANSR ) THEN
  294. *
  295. * N is odd and TRANSR = 'N'
  296. *
  297. IF( LOWER ) THEN
  298. *
  299. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  300. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  301. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
  302. *
  303. IJP = 0
  304. JP = 0
  305. DO J = 0, N2
  306. DO I = J, N - 1
  307. IJ = I + JP
  308. AP( IJP ) = ARF( IJ )
  309. IJP = IJP + 1
  310. END DO
  311. JP = JP + LDA
  312. END DO
  313. DO I = 0, N2 - 1
  314. DO J = 1 + I, N2
  315. IJ = I + J*LDA
  316. AP( IJP ) = ARF( IJ )
  317. IJP = IJP + 1
  318. END DO
  319. END DO
  320. *
  321. ELSE
  322. *
  323. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  324. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  325. * T1 -> a(n2), T2 -> a(n1), S -> a(0)
  326. *
  327. IJP = 0
  328. DO J = 0, N1 - 1
  329. IJ = N2 + J
  330. DO I = 0, J
  331. AP( IJP ) = ARF( IJ )
  332. IJP = IJP + 1
  333. IJ = IJ + LDA
  334. END DO
  335. END DO
  336. JS = 0
  337. DO J = N1, N - 1
  338. IJ = JS
  339. DO IJ = JS, JS + J
  340. AP( IJP ) = ARF( IJ )
  341. IJP = IJP + 1
  342. END DO
  343. JS = JS + LDA
  344. END DO
  345. *
  346. END IF
  347. *
  348. ELSE
  349. *
  350. * N is odd and TRANSR = 'T'
  351. *
  352. IF( LOWER ) THEN
  353. *
  354. * SRPA for LOWER, TRANSPOSE and N is odd
  355. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  356. * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  357. *
  358. IJP = 0
  359. DO I = 0, N2
  360. DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  361. AP( IJP ) = ARF( IJ )
  362. IJP = IJP + 1
  363. END DO
  364. END DO
  365. JS = 1
  366. DO J = 0, N2 - 1
  367. DO IJ = JS, JS + N2 - J - 1
  368. AP( IJP ) = ARF( IJ )
  369. IJP = IJP + 1
  370. END DO
  371. JS = JS + LDA + 1
  372. END DO
  373. *
  374. ELSE
  375. *
  376. * SRPA for UPPER, TRANSPOSE and N is odd
  377. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  378. * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  379. *
  380. IJP = 0
  381. JS = N2*LDA
  382. DO J = 0, N1 - 1
  383. DO IJ = JS, JS + J
  384. AP( IJP ) = ARF( IJ )
  385. IJP = IJP + 1
  386. END DO
  387. JS = JS + LDA
  388. END DO
  389. DO I = 0, N1
  390. DO IJ = I, I + ( N1+I )*LDA, LDA
  391. AP( IJP ) = ARF( IJ )
  392. IJP = IJP + 1
  393. END DO
  394. END DO
  395. *
  396. END IF
  397. *
  398. END IF
  399. *
  400. ELSE
  401. *
  402. * N is even
  403. *
  404. IF( NORMALTRANSR ) THEN
  405. *
  406. * N is even and TRANSR = 'N'
  407. *
  408. IF( LOWER ) THEN
  409. *
  410. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  411. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  412. * T1 -> a(1), T2 -> a(0), S -> a(k+1)
  413. *
  414. IJP = 0
  415. JP = 0
  416. DO J = 0, K - 1
  417. DO I = J, N - 1
  418. IJ = 1 + I + JP
  419. AP( IJP ) = ARF( IJ )
  420. IJP = IJP + 1
  421. END DO
  422. JP = JP + LDA
  423. END DO
  424. DO I = 0, K - 1
  425. DO J = I, K - 1
  426. IJ = I + J*LDA
  427. AP( IJP ) = ARF( IJ )
  428. IJP = IJP + 1
  429. END DO
  430. END DO
  431. *
  432. ELSE
  433. *
  434. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  435. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  436. * T1 -> a(k+1), T2 -> a(k), S -> a(0)
  437. *
  438. IJP = 0
  439. DO J = 0, K - 1
  440. IJ = K + 1 + J
  441. DO I = 0, J
  442. AP( IJP ) = ARF( IJ )
  443. IJP = IJP + 1
  444. IJ = IJ + LDA
  445. END DO
  446. END DO
  447. JS = 0
  448. DO J = K, N - 1
  449. IJ = JS
  450. DO IJ = JS, JS + J
  451. AP( IJP ) = ARF( IJ )
  452. IJP = IJP + 1
  453. END DO
  454. JS = JS + LDA
  455. END DO
  456. *
  457. END IF
  458. *
  459. ELSE
  460. *
  461. * N is even and TRANSR = 'T'
  462. *
  463. IF( LOWER ) THEN
  464. *
  465. * SRPA for LOWER, TRANSPOSE and N is even (see paper)
  466. * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  467. * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  468. *
  469. IJP = 0
  470. DO I = 0, K - 1
  471. DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  472. AP( IJP ) = ARF( IJ )
  473. IJP = IJP + 1
  474. END DO
  475. END DO
  476. JS = 0
  477. DO J = 0, K - 1
  478. DO IJ = JS, JS + K - J - 1
  479. AP( IJP ) = ARF( IJ )
  480. IJP = IJP + 1
  481. END DO
  482. JS = JS + LDA + 1
  483. END DO
  484. *
  485. ELSE
  486. *
  487. * SRPA for UPPER, TRANSPOSE and N is even (see paper)
  488. * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
  489. * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  490. *
  491. IJP = 0
  492. JS = ( K+1 )*LDA
  493. DO J = 0, K - 1
  494. DO IJ = JS, JS + J
  495. AP( IJP ) = ARF( IJ )
  496. IJP = IJP + 1
  497. END DO
  498. JS = JS + LDA
  499. END DO
  500. DO I = 0, K - 1
  501. DO IJ = I, I + ( K+I )*LDA, LDA
  502. AP( IJP ) = ARF( IJ )
  503. IJP = IJP + 1
  504. END DO
  505. END DO
  506. *
  507. END IF
  508. *
  509. END IF
  510. *
  511. END IF
  512. *
  513. RETURN
  514. *
  515. * End of DTFTTP
  516. *
  517. END