You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytf2.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. *> \brief \b DSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSYTF2 computes the factorization of a real symmetric matrix A using
  39. *> the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**T is the transpose of U, and D is symmetric and
  45. *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> symmetric matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *>
  94. *> If UPLO = 'U':
  95. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  96. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  97. *>
  98. *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  99. *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100. *> is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107. *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108. *> is a 2-by-2 diagonal block.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -k, the k-th argument had an illegal value
  116. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  117. *> has been completed, but the block diagonal matrix D is
  118. *> exactly singular, and division by zero will occur if it
  119. *> is used to solve a system of equations.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \date December 2016
  131. *
  132. *> \ingroup doubleSYcomputational
  133. *
  134. *> \par Further Details:
  135. * =====================
  136. *>
  137. *> \verbatim
  138. *>
  139. *> If UPLO = 'U', then A = U*D*U**T, where
  140. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  144. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146. *>
  147. *> ( I v 0 ) k-s
  148. *> U(k) = ( 0 I 0 ) s
  149. *> ( 0 0 I ) n-k
  150. *> k-s s n-k
  151. *>
  152. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155. *>
  156. *> If UPLO = 'L', then A = L*D*L**T, where
  157. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  161. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163. *>
  164. *> ( I 0 0 ) k-1
  165. *> L(k) = ( 0 I 0 ) s
  166. *> ( 0 v I ) n-k-s+1
  167. *> k-1 s n-k-s+1
  168. *>
  169. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172. *> \endverbatim
  173. *
  174. *> \par Contributors:
  175. * ==================
  176. *>
  177. *> \verbatim
  178. *>
  179. *> 09-29-06 - patch from
  180. *> Bobby Cheng, MathWorks
  181. *>
  182. *> Replace l.204 and l.372
  183. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  184. *> by
  185. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  186. *>
  187. *> 01-01-96 - Based on modifications by
  188. *> J. Lewis, Boeing Computer Services Company
  189. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  190. *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  191. *> Company
  192. *> \endverbatim
  193. *
  194. * =====================================================================
  195. SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  196. *
  197. * -- LAPACK computational routine (version 3.7.0) --
  198. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  199. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  200. * December 2016
  201. *
  202. * .. Scalar Arguments ..
  203. CHARACTER UPLO
  204. INTEGER INFO, LDA, N
  205. * ..
  206. * .. Array Arguments ..
  207. INTEGER IPIV( * )
  208. DOUBLE PRECISION A( LDA, * )
  209. * ..
  210. *
  211. * =====================================================================
  212. *
  213. * .. Parameters ..
  214. DOUBLE PRECISION ZERO, ONE
  215. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  216. DOUBLE PRECISION EIGHT, SEVTEN
  217. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  218. * ..
  219. * .. Local Scalars ..
  220. LOGICAL UPPER
  221. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  222. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  223. $ ROWMAX, T, WK, WKM1, WKP1
  224. * ..
  225. * .. External Functions ..
  226. LOGICAL LSAME, DISNAN
  227. INTEGER IDAMAX
  228. EXTERNAL LSAME, IDAMAX, DISNAN
  229. * ..
  230. * .. External Subroutines ..
  231. EXTERNAL DSCAL, DSWAP, DSYR, XERBLA
  232. * ..
  233. * .. Intrinsic Functions ..
  234. INTRINSIC ABS, MAX, SQRT
  235. * ..
  236. * .. Executable Statements ..
  237. *
  238. * Test the input parameters.
  239. *
  240. INFO = 0
  241. UPPER = LSAME( UPLO, 'U' )
  242. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  243. INFO = -1
  244. ELSE IF( N.LT.0 ) THEN
  245. INFO = -2
  246. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  247. INFO = -4
  248. END IF
  249. IF( INFO.NE.0 ) THEN
  250. CALL XERBLA( 'DSYTF2', -INFO )
  251. RETURN
  252. END IF
  253. *
  254. * Initialize ALPHA for use in choosing pivot block size.
  255. *
  256. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  257. *
  258. IF( UPPER ) THEN
  259. *
  260. * Factorize A as U*D*U**T using the upper triangle of A
  261. *
  262. * K is the main loop index, decreasing from N to 1 in steps of
  263. * 1 or 2
  264. *
  265. K = N
  266. 10 CONTINUE
  267. *
  268. * If K < 1, exit from loop
  269. *
  270. IF( K.LT.1 )
  271. $ GO TO 70
  272. KSTEP = 1
  273. *
  274. * Determine rows and columns to be interchanged and whether
  275. * a 1-by-1 or 2-by-2 pivot block will be used
  276. *
  277. ABSAKK = ABS( A( K, K ) )
  278. *
  279. * IMAX is the row-index of the largest off-diagonal element in
  280. * column K, and COLMAX is its absolute value.
  281. * Determine both COLMAX and IMAX.
  282. *
  283. IF( K.GT.1 ) THEN
  284. IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  285. COLMAX = ABS( A( IMAX, K ) )
  286. ELSE
  287. COLMAX = ZERO
  288. END IF
  289. *
  290. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  291. *
  292. * Column K is zero or underflow, or contains a NaN:
  293. * set INFO and continue
  294. *
  295. IF( INFO.EQ.0 )
  296. $ INFO = K
  297. KP = K
  298. ELSE
  299. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  300. *
  301. * no interchange, use 1-by-1 pivot block
  302. *
  303. KP = K
  304. ELSE
  305. *
  306. * JMAX is the column-index of the largest off-diagonal
  307. * element in row IMAX, and ROWMAX is its absolute value
  308. *
  309. JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  310. ROWMAX = ABS( A( IMAX, JMAX ) )
  311. IF( IMAX.GT.1 ) THEN
  312. JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  313. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  314. END IF
  315. *
  316. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  317. *
  318. * no interchange, use 1-by-1 pivot block
  319. *
  320. KP = K
  321. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  322. *
  323. * interchange rows and columns K and IMAX, use 1-by-1
  324. * pivot block
  325. *
  326. KP = IMAX
  327. ELSE
  328. *
  329. * interchange rows and columns K-1 and IMAX, use 2-by-2
  330. * pivot block
  331. *
  332. KP = IMAX
  333. KSTEP = 2
  334. END IF
  335. END IF
  336. *
  337. KK = K - KSTEP + 1
  338. IF( KP.NE.KK ) THEN
  339. *
  340. * Interchange rows and columns KK and KP in the leading
  341. * submatrix A(1:k,1:k)
  342. *
  343. CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  344. CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  345. $ LDA )
  346. T = A( KK, KK )
  347. A( KK, KK ) = A( KP, KP )
  348. A( KP, KP ) = T
  349. IF( KSTEP.EQ.2 ) THEN
  350. T = A( K-1, K )
  351. A( K-1, K ) = A( KP, K )
  352. A( KP, K ) = T
  353. END IF
  354. END IF
  355. *
  356. * Update the leading submatrix
  357. *
  358. IF( KSTEP.EQ.1 ) THEN
  359. *
  360. * 1-by-1 pivot block D(k): column k now holds
  361. *
  362. * W(k) = U(k)*D(k)
  363. *
  364. * where U(k) is the k-th column of U
  365. *
  366. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  367. *
  368. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  369. *
  370. R1 = ONE / A( K, K )
  371. CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  372. *
  373. * Store U(k) in column k
  374. *
  375. CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  376. ELSE
  377. *
  378. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  379. *
  380. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  381. *
  382. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  383. * of U
  384. *
  385. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  386. *
  387. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  388. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  389. *
  390. IF( K.GT.2 ) THEN
  391. *
  392. D12 = A( K-1, K )
  393. D22 = A( K-1, K-1 ) / D12
  394. D11 = A( K, K ) / D12
  395. T = ONE / ( D11*D22-ONE )
  396. D12 = T / D12
  397. *
  398. DO 30 J = K - 2, 1, -1
  399. WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  400. WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  401. DO 20 I = J, 1, -1
  402. A( I, J ) = A( I, J ) - A( I, K )*WK -
  403. $ A( I, K-1 )*WKM1
  404. 20 CONTINUE
  405. A( J, K ) = WK
  406. A( J, K-1 ) = WKM1
  407. 30 CONTINUE
  408. *
  409. END IF
  410. *
  411. END IF
  412. END IF
  413. *
  414. * Store details of the interchanges in IPIV
  415. *
  416. IF( KSTEP.EQ.1 ) THEN
  417. IPIV( K ) = KP
  418. ELSE
  419. IPIV( K ) = -KP
  420. IPIV( K-1 ) = -KP
  421. END IF
  422. *
  423. * Decrease K and return to the start of the main loop
  424. *
  425. K = K - KSTEP
  426. GO TO 10
  427. *
  428. ELSE
  429. *
  430. * Factorize A as L*D*L**T using the lower triangle of A
  431. *
  432. * K is the main loop index, increasing from 1 to N in steps of
  433. * 1 or 2
  434. *
  435. K = 1
  436. 40 CONTINUE
  437. *
  438. * If K > N, exit from loop
  439. *
  440. IF( K.GT.N )
  441. $ GO TO 70
  442. KSTEP = 1
  443. *
  444. * Determine rows and columns to be interchanged and whether
  445. * a 1-by-1 or 2-by-2 pivot block will be used
  446. *
  447. ABSAKK = ABS( A( K, K ) )
  448. *
  449. * IMAX is the row-index of the largest off-diagonal element in
  450. * column K, and COLMAX is its absolute value.
  451. * Determine both COLMAX and IMAX.
  452. *
  453. IF( K.LT.N ) THEN
  454. IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  455. COLMAX = ABS( A( IMAX, K ) )
  456. ELSE
  457. COLMAX = ZERO
  458. END IF
  459. *
  460. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  461. *
  462. * Column K is zero or underflow, or contains a NaN:
  463. * set INFO and continue
  464. *
  465. IF( INFO.EQ.0 )
  466. $ INFO = K
  467. KP = K
  468. ELSE
  469. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  470. *
  471. * no interchange, use 1-by-1 pivot block
  472. *
  473. KP = K
  474. ELSE
  475. *
  476. * JMAX is the column-index of the largest off-diagonal
  477. * element in row IMAX, and ROWMAX is its absolute value
  478. *
  479. JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  480. ROWMAX = ABS( A( IMAX, JMAX ) )
  481. IF( IMAX.LT.N ) THEN
  482. JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  483. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  484. END IF
  485. *
  486. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  487. *
  488. * no interchange, use 1-by-1 pivot block
  489. *
  490. KP = K
  491. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  492. *
  493. * interchange rows and columns K and IMAX, use 1-by-1
  494. * pivot block
  495. *
  496. KP = IMAX
  497. ELSE
  498. *
  499. * interchange rows and columns K+1 and IMAX, use 2-by-2
  500. * pivot block
  501. *
  502. KP = IMAX
  503. KSTEP = 2
  504. END IF
  505. END IF
  506. *
  507. KK = K + KSTEP - 1
  508. IF( KP.NE.KK ) THEN
  509. *
  510. * Interchange rows and columns KK and KP in the trailing
  511. * submatrix A(k:n,k:n)
  512. *
  513. IF( KP.LT.N )
  514. $ CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  515. CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  516. $ LDA )
  517. T = A( KK, KK )
  518. A( KK, KK ) = A( KP, KP )
  519. A( KP, KP ) = T
  520. IF( KSTEP.EQ.2 ) THEN
  521. T = A( K+1, K )
  522. A( K+1, K ) = A( KP, K )
  523. A( KP, K ) = T
  524. END IF
  525. END IF
  526. *
  527. * Update the trailing submatrix
  528. *
  529. IF( KSTEP.EQ.1 ) THEN
  530. *
  531. * 1-by-1 pivot block D(k): column k now holds
  532. *
  533. * W(k) = L(k)*D(k)
  534. *
  535. * where L(k) is the k-th column of L
  536. *
  537. IF( K.LT.N ) THEN
  538. *
  539. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  540. *
  541. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  542. *
  543. D11 = ONE / A( K, K )
  544. CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  545. $ A( K+1, K+1 ), LDA )
  546. *
  547. * Store L(k) in column K
  548. *
  549. CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  550. END IF
  551. ELSE
  552. *
  553. * 2-by-2 pivot block D(k)
  554. *
  555. IF( K.LT.N-1 ) THEN
  556. *
  557. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  558. *
  559. * A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
  560. *
  561. * where L(k) and L(k+1) are the k-th and (k+1)-th
  562. * columns of L
  563. *
  564. D21 = A( K+1, K )
  565. D11 = A( K+1, K+1 ) / D21
  566. D22 = A( K, K ) / D21
  567. T = ONE / ( D11*D22-ONE )
  568. D21 = T / D21
  569. *
  570. DO 60 J = K + 2, N
  571. *
  572. WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  573. WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  574. *
  575. DO 50 I = J, N
  576. A( I, J ) = A( I, J ) - A( I, K )*WK -
  577. $ A( I, K+1 )*WKP1
  578. 50 CONTINUE
  579. *
  580. A( J, K ) = WK
  581. A( J, K+1 ) = WKP1
  582. *
  583. 60 CONTINUE
  584. END IF
  585. END IF
  586. END IF
  587. *
  588. * Store details of the interchanges in IPIV
  589. *
  590. IF( KSTEP.EQ.1 ) THEN
  591. IPIV( K ) = KP
  592. ELSE
  593. IPIV( K ) = -KP
  594. IPIV( K+1 ) = -KP
  595. END IF
  596. *
  597. * Increase K and return to the start of the main loop
  598. *
  599. K = K + KSTEP
  600. GO TO 40
  601. *
  602. END IF
  603. *
  604. 70 CONTINUE
  605. *
  606. RETURN
  607. *
  608. * End of DSYTF2
  609. *
  610. END