You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgtsv.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. *> \brief <b> DGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGTSV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDB, N, NRHS
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DGTSV solves the equation
  37. *>
  38. *> A*X = B,
  39. *>
  40. *> where A is an n by n tridiagonal matrix, by Gaussian elimination with
  41. *> partial pivoting.
  42. *>
  43. *> Note that the equation A**T*X = B may be solved by interchanging the
  44. *> order of the arguments DU and DL.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The order of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] NRHS
  57. *> \verbatim
  58. *> NRHS is INTEGER
  59. *> The number of right hand sides, i.e., the number of columns
  60. *> of the matrix B. NRHS >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] DL
  64. *> \verbatim
  65. *> DL is DOUBLE PRECISION array, dimension (N-1)
  66. *> On entry, DL must contain the (n-1) sub-diagonal elements of
  67. *> A.
  68. *>
  69. *> On exit, DL is overwritten by the (n-2) elements of the
  70. *> second super-diagonal of the upper triangular matrix U from
  71. *> the LU factorization of A, in DL(1), ..., DL(n-2).
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] D
  75. *> \verbatim
  76. *> D is DOUBLE PRECISION array, dimension (N)
  77. *> On entry, D must contain the diagonal elements of A.
  78. *>
  79. *> On exit, D is overwritten by the n diagonal elements of U.
  80. *> \endverbatim
  81. *>
  82. *> \param[in,out] DU
  83. *> \verbatim
  84. *> DU is DOUBLE PRECISION array, dimension (N-1)
  85. *> On entry, DU must contain the (n-1) super-diagonal elements
  86. *> of A.
  87. *>
  88. *> On exit, DU is overwritten by the (n-1) elements of the first
  89. *> super-diagonal of U.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] B
  93. *> \verbatim
  94. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  95. *> On entry, the N by NRHS matrix of right hand side matrix B.
  96. *> On exit, if INFO = 0, the N by NRHS solution matrix X.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDB
  100. *> \verbatim
  101. *> LDB is INTEGER
  102. *> The leading dimension of the array B. LDB >= max(1,N).
  103. *> \endverbatim
  104. *>
  105. *> \param[out] INFO
  106. *> \verbatim
  107. *> INFO is INTEGER
  108. *> = 0: successful exit
  109. *> < 0: if INFO = -i, the i-th argument had an illegal value
  110. *> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
  111. *> has not been computed. The factorization has not been
  112. *> completed unless i = N.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date December 2016
  124. *
  125. *> \ingroup doubleGTsolve
  126. *
  127. * =====================================================================
  128. SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
  129. *
  130. * -- LAPACK driver routine (version 3.7.0) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * December 2016
  134. *
  135. * .. Scalar Arguments ..
  136. INTEGER INFO, LDB, N, NRHS
  137. * ..
  138. * .. Array Arguments ..
  139. DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
  140. * ..
  141. *
  142. * =====================================================================
  143. *
  144. * .. Parameters ..
  145. DOUBLE PRECISION ZERO
  146. PARAMETER ( ZERO = 0.0D+0 )
  147. * ..
  148. * .. Local Scalars ..
  149. INTEGER I, J
  150. DOUBLE PRECISION FACT, TEMP
  151. * ..
  152. * .. Intrinsic Functions ..
  153. INTRINSIC ABS, MAX
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL XERBLA
  157. * ..
  158. * .. Executable Statements ..
  159. *
  160. INFO = 0
  161. IF( N.LT.0 ) THEN
  162. INFO = -1
  163. ELSE IF( NRHS.LT.0 ) THEN
  164. INFO = -2
  165. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  166. INFO = -7
  167. END IF
  168. IF( INFO.NE.0 ) THEN
  169. CALL XERBLA( 'DGTSV ', -INFO )
  170. RETURN
  171. END IF
  172. *
  173. IF( N.EQ.0 )
  174. $ RETURN
  175. *
  176. IF( NRHS.EQ.1 ) THEN
  177. DO 10 I = 1, N - 2
  178. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  179. *
  180. * No row interchange required
  181. *
  182. IF( D( I ).NE.ZERO ) THEN
  183. FACT = DL( I ) / D( I )
  184. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  185. B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
  186. ELSE
  187. INFO = I
  188. RETURN
  189. END IF
  190. DL( I ) = ZERO
  191. ELSE
  192. *
  193. * Interchange rows I and I+1
  194. *
  195. FACT = D( I ) / DL( I )
  196. D( I ) = DL( I )
  197. TEMP = D( I+1 )
  198. D( I+1 ) = DU( I ) - FACT*TEMP
  199. DL( I ) = DU( I+1 )
  200. DU( I+1 ) = -FACT*DL( I )
  201. DU( I ) = TEMP
  202. TEMP = B( I, 1 )
  203. B( I, 1 ) = B( I+1, 1 )
  204. B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
  205. END IF
  206. 10 CONTINUE
  207. IF( N.GT.1 ) THEN
  208. I = N - 1
  209. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  210. IF( D( I ).NE.ZERO ) THEN
  211. FACT = DL( I ) / D( I )
  212. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  213. B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
  214. ELSE
  215. INFO = I
  216. RETURN
  217. END IF
  218. ELSE
  219. FACT = D( I ) / DL( I )
  220. D( I ) = DL( I )
  221. TEMP = D( I+1 )
  222. D( I+1 ) = DU( I ) - FACT*TEMP
  223. DU( I ) = TEMP
  224. TEMP = B( I, 1 )
  225. B( I, 1 ) = B( I+1, 1 )
  226. B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
  227. END IF
  228. END IF
  229. IF( D( N ).EQ.ZERO ) THEN
  230. INFO = N
  231. RETURN
  232. END IF
  233. ELSE
  234. DO 40 I = 1, N - 2
  235. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  236. *
  237. * No row interchange required
  238. *
  239. IF( D( I ).NE.ZERO ) THEN
  240. FACT = DL( I ) / D( I )
  241. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  242. DO 20 J = 1, NRHS
  243. B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
  244. 20 CONTINUE
  245. ELSE
  246. INFO = I
  247. RETURN
  248. END IF
  249. DL( I ) = ZERO
  250. ELSE
  251. *
  252. * Interchange rows I and I+1
  253. *
  254. FACT = D( I ) / DL( I )
  255. D( I ) = DL( I )
  256. TEMP = D( I+1 )
  257. D( I+1 ) = DU( I ) - FACT*TEMP
  258. DL( I ) = DU( I+1 )
  259. DU( I+1 ) = -FACT*DL( I )
  260. DU( I ) = TEMP
  261. DO 30 J = 1, NRHS
  262. TEMP = B( I, J )
  263. B( I, J ) = B( I+1, J )
  264. B( I+1, J ) = TEMP - FACT*B( I+1, J )
  265. 30 CONTINUE
  266. END IF
  267. 40 CONTINUE
  268. IF( N.GT.1 ) THEN
  269. I = N - 1
  270. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  271. IF( D( I ).NE.ZERO ) THEN
  272. FACT = DL( I ) / D( I )
  273. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  274. DO 50 J = 1, NRHS
  275. B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
  276. 50 CONTINUE
  277. ELSE
  278. INFO = I
  279. RETURN
  280. END IF
  281. ELSE
  282. FACT = D( I ) / DL( I )
  283. D( I ) = DL( I )
  284. TEMP = D( I+1 )
  285. D( I+1 ) = DU( I ) - FACT*TEMP
  286. DU( I ) = TEMP
  287. DO 60 J = 1, NRHS
  288. TEMP = B( I, J )
  289. B( I, J ) = B( I+1, J )
  290. B( I+1, J ) = TEMP - FACT*B( I+1, J )
  291. 60 CONTINUE
  292. END IF
  293. END IF
  294. IF( D( N ).EQ.ZERO ) THEN
  295. INFO = N
  296. RETURN
  297. END IF
  298. END IF
  299. *
  300. * Back solve with the matrix U from the factorization.
  301. *
  302. IF( NRHS.LE.2 ) THEN
  303. J = 1
  304. 70 CONTINUE
  305. B( N, J ) = B( N, J ) / D( N )
  306. IF( N.GT.1 )
  307. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
  308. DO 80 I = N - 2, 1, -1
  309. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
  310. $ B( I+2, J ) ) / D( I )
  311. 80 CONTINUE
  312. IF( J.LT.NRHS ) THEN
  313. J = J + 1
  314. GO TO 70
  315. END IF
  316. ELSE
  317. DO 100 J = 1, NRHS
  318. B( N, J ) = B( N, J ) / D( N )
  319. IF( N.GT.1 )
  320. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  321. $ D( N-1 )
  322. DO 90 I = N - 2, 1, -1
  323. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
  324. $ B( I+2, J ) ) / D( I )
  325. 90 CONTINUE
  326. 100 CONTINUE
  327. END IF
  328. *
  329. RETURN
  330. *
  331. * End of DGTSV
  332. *
  333. END