You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgglse.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. *> \brief <b> DGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGLSE + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgglse.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgglse.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgglse.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDA, LDB, LWORK, M, N, P
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ),
  29. * $ WORK( * ), X( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DGGLSE solves the linear equality-constrained least squares (LSE)
  39. *> problem:
  40. *>
  41. *> minimize || c - A*x ||_2 subject to B*x = d
  42. *>
  43. *> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
  44. *> M-vector, and d is a given P-vector. It is assumed that
  45. *> P <= N <= M+P, and
  46. *>
  47. *> rank(B) = P and rank( (A) ) = N.
  48. *> ( (B) )
  49. *>
  50. *> These conditions ensure that the LSE problem has a unique solution,
  51. *> which is obtained using a generalized RQ factorization of the
  52. *> matrices (B, A) given by
  53. *>
  54. *> B = (0 R)*Q, A = Z*T*Q.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] M
  61. *> \verbatim
  62. *> M is INTEGER
  63. *> The number of rows of the matrix A. M >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] N
  67. *> \verbatim
  68. *> N is INTEGER
  69. *> The number of columns of the matrices A and B. N >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] P
  73. *> \verbatim
  74. *> P is INTEGER
  75. *> The number of rows of the matrix B. 0 <= P <= N <= M+P.
  76. *> \endverbatim
  77. *>
  78. *> \param[in,out] A
  79. *> \verbatim
  80. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  81. *> On entry, the M-by-N matrix A.
  82. *> On exit, the elements on and above the diagonal of the array
  83. *> contain the min(M,N)-by-N upper trapezoidal matrix T.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,M).
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] B
  93. *> \verbatim
  94. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  95. *> On entry, the P-by-N matrix B.
  96. *> On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
  97. *> contains the P-by-P upper triangular matrix R.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDB
  101. *> \verbatim
  102. *> LDB is INTEGER
  103. *> The leading dimension of the array B. LDB >= max(1,P).
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] C
  107. *> \verbatim
  108. *> C is DOUBLE PRECISION array, dimension (M)
  109. *> On entry, C contains the right hand side vector for the
  110. *> least squares part of the LSE problem.
  111. *> On exit, the residual sum of squares for the solution
  112. *> is given by the sum of squares of elements N-P+1 to M of
  113. *> vector C.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] D
  117. *> \verbatim
  118. *> D is DOUBLE PRECISION array, dimension (P)
  119. *> On entry, D contains the right hand side vector for the
  120. *> constrained equation.
  121. *> On exit, D is destroyed.
  122. *> \endverbatim
  123. *>
  124. *> \param[out] X
  125. *> \verbatim
  126. *> X is DOUBLE PRECISION array, dimension (N)
  127. *> On exit, X is the solution of the LSE problem.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  133. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LWORK
  137. *> \verbatim
  138. *> LWORK is INTEGER
  139. *> The dimension of the array WORK. LWORK >= max(1,M+N+P).
  140. *> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
  141. *> where NB is an upper bound for the optimal blocksizes for
  142. *> DGEQRF, SGERQF, DORMQR and SORMRQ.
  143. *>
  144. *> If LWORK = -1, then a workspace query is assumed; the routine
  145. *> only calculates the optimal size of the WORK array, returns
  146. *> this value as the first entry of the WORK array, and no error
  147. *> message related to LWORK is issued by XERBLA.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> = 0: successful exit.
  154. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  155. *> = 1: the upper triangular factor R associated with B in the
  156. *> generalized RQ factorization of the pair (B, A) is
  157. *> singular, so that rank(B) < P; the least squares
  158. *> solution could not be computed.
  159. *> = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
  160. *> T associated with A in the generalized RQ factorization
  161. *> of the pair (B, A) is singular, so that
  162. *> rank( (A) ) < N; the least squares solution could not
  163. *> ( (B) )
  164. *> be computed.
  165. *> \endverbatim
  166. *
  167. * Authors:
  168. * ========
  169. *
  170. *> \author Univ. of Tennessee
  171. *> \author Univ. of California Berkeley
  172. *> \author Univ. of Colorado Denver
  173. *> \author NAG Ltd.
  174. *
  175. *> \date December 2016
  176. *
  177. *> \ingroup doubleOTHERsolve
  178. *
  179. * =====================================================================
  180. SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
  181. $ INFO )
  182. *
  183. * -- LAPACK driver routine (version 3.7.0) --
  184. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  185. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186. * December 2016
  187. *
  188. * .. Scalar Arguments ..
  189. INTEGER INFO, LDA, LDB, LWORK, M, N, P
  190. * ..
  191. * .. Array Arguments ..
  192. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ),
  193. $ WORK( * ), X( * )
  194. * ..
  195. *
  196. * =====================================================================
  197. *
  198. * .. Parameters ..
  199. DOUBLE PRECISION ONE
  200. PARAMETER ( ONE = 1.0D+0 )
  201. * ..
  202. * .. Local Scalars ..
  203. LOGICAL LQUERY
  204. INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
  205. $ NB4, NR
  206. * ..
  207. * .. External Subroutines ..
  208. EXTERNAL DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
  209. $ DTRMV, DTRTRS, XERBLA
  210. * ..
  211. * .. External Functions ..
  212. INTEGER ILAENV
  213. EXTERNAL ILAENV
  214. * ..
  215. * .. Intrinsic Functions ..
  216. INTRINSIC INT, MAX, MIN
  217. * ..
  218. * .. Executable Statements ..
  219. *
  220. * Test the input parameters
  221. *
  222. INFO = 0
  223. MN = MIN( M, N )
  224. LQUERY = ( LWORK.EQ.-1 )
  225. IF( M.LT.0 ) THEN
  226. INFO = -1
  227. ELSE IF( N.LT.0 ) THEN
  228. INFO = -2
  229. ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
  230. INFO = -3
  231. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  232. INFO = -5
  233. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  234. INFO = -7
  235. END IF
  236. *
  237. * Calculate workspace
  238. *
  239. IF( INFO.EQ.0) THEN
  240. IF( N.EQ.0 ) THEN
  241. LWKMIN = 1
  242. LWKOPT = 1
  243. ELSE
  244. NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  245. NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  246. NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
  247. NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
  248. NB = MAX( NB1, NB2, NB3, NB4 )
  249. LWKMIN = M + N + P
  250. LWKOPT = P + MN + MAX( M, N )*NB
  251. END IF
  252. WORK( 1 ) = LWKOPT
  253. *
  254. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  255. INFO = -12
  256. END IF
  257. END IF
  258. *
  259. IF( INFO.NE.0 ) THEN
  260. CALL XERBLA( 'DGGLSE', -INFO )
  261. RETURN
  262. ELSE IF( LQUERY ) THEN
  263. RETURN
  264. END IF
  265. *
  266. * Quick return if possible
  267. *
  268. IF( N.EQ.0 )
  269. $ RETURN
  270. *
  271. * Compute the GRQ factorization of matrices B and A:
  272. *
  273. * B*Q**T = ( 0 T12 ) P Z**T*A*Q**T = ( R11 R12 ) N-P
  274. * N-P P ( 0 R22 ) M+P-N
  275. * N-P P
  276. *
  277. * where T12 and R11 are upper triangular, and Q and Z are
  278. * orthogonal.
  279. *
  280. CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
  281. $ WORK( P+MN+1 ), LWORK-P-MN, INFO )
  282. LOPT = WORK( P+MN+1 )
  283. *
  284. * Update c = Z**T *c = ( c1 ) N-P
  285. * ( c2 ) M+P-N
  286. *
  287. CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
  288. $ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
  289. LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  290. *
  291. * Solve T12*x2 = d for x2
  292. *
  293. IF( P.GT.0 ) THEN
  294. CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
  295. $ B( 1, N-P+1 ), LDB, D, P, INFO )
  296. *
  297. IF( INFO.GT.0 ) THEN
  298. INFO = 1
  299. RETURN
  300. END IF
  301. *
  302. * Put the solution in X
  303. *
  304. CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
  305. *
  306. * Update c1
  307. *
  308. CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
  309. $ D, 1, ONE, C, 1 )
  310. END IF
  311. *
  312. * Solve R11*x1 = c1 for x1
  313. *
  314. IF( N.GT.P ) THEN
  315. CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
  316. $ A, LDA, C, N-P, INFO )
  317. *
  318. IF( INFO.GT.0 ) THEN
  319. INFO = 2
  320. RETURN
  321. END IF
  322. *
  323. * Put the solutions in X
  324. *
  325. CALL DCOPY( N-P, C, 1, X, 1 )
  326. END IF
  327. *
  328. * Compute the residual vector:
  329. *
  330. IF( M.LT.N ) THEN
  331. NR = M + P - N
  332. IF( NR.GT.0 )
  333. $ CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
  334. $ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
  335. ELSE
  336. NR = P
  337. END IF
  338. IF( NR.GT.0 ) THEN
  339. CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
  340. $ A( N-P+1, N-P+1 ), LDA, D, 1 )
  341. CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
  342. END IF
  343. *
  344. * Backward transformation x = Q**T*x
  345. *
  346. CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
  347. $ N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
  348. WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  349. *
  350. RETURN
  351. *
  352. * End of DGGLSE
  353. *
  354. END