You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chfrk.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. *> \brief \b CHFRK performs a Hermitian rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> CHFRK performs one of the Hermitian rank--k operations
  42. *>
  43. *> C := alpha*A*A**H + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**H*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n Hermitian
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'C': The Conjugate-transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
  87. *>
  88. *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with
  106. *> TRANS = 'C' or 'c', K specifies the number of rows of the
  107. *> matrix A. K must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is REAL
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is COMPLEX array, dimension (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is REAL
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is COMPLEX array, dimension (N*(N+1)/2)
  149. *> On entry, the matrix A in RFP Format. RFP Format is
  150. *> described by TRANSR, UPLO and N. Note that the imaginary
  151. *> parts of the diagonal elements need not be set, they are
  152. *> assumed to be zero, and on exit they are set to zero.
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \date December 2016
  164. *
  165. *> \ingroup complexOTHERcomputational
  166. *
  167. * =====================================================================
  168. SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  169. $ C )
  170. *
  171. * -- LAPACK computational routine (version 3.7.0) --
  172. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  173. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  174. * December 2016
  175. *
  176. * .. Scalar Arguments ..
  177. REAL ALPHA, BETA
  178. INTEGER K, LDA, N
  179. CHARACTER TRANS, TRANSR, UPLO
  180. * ..
  181. * .. Array Arguments ..
  182. COMPLEX A( LDA, * ), C( * )
  183. * ..
  184. *
  185. * =====================================================================
  186. *
  187. * ..
  188. * .. Parameters ..
  189. REAL ONE, ZERO
  190. COMPLEX CZERO
  191. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  192. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
  193. * ..
  194. * .. Local Scalars ..
  195. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  196. INTEGER INFO, NROWA, J, NK, N1, N2
  197. COMPLEX CALPHA, CBETA
  198. * ..
  199. * .. External Functions ..
  200. LOGICAL LSAME
  201. EXTERNAL LSAME
  202. * ..
  203. * .. External Subroutines ..
  204. EXTERNAL CGEMM, CHERK, XERBLA
  205. * ..
  206. * .. Intrinsic Functions ..
  207. INTRINSIC MAX, CMPLX
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. *
  212. * Test the input parameters.
  213. *
  214. INFO = 0
  215. NORMALTRANSR = LSAME( TRANSR, 'N' )
  216. LOWER = LSAME( UPLO, 'L' )
  217. NOTRANS = LSAME( TRANS, 'N' )
  218. *
  219. IF( NOTRANS ) THEN
  220. NROWA = N
  221. ELSE
  222. NROWA = K
  223. END IF
  224. *
  225. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  226. INFO = -1
  227. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  228. INFO = -2
  229. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  230. INFO = -3
  231. ELSE IF( N.LT.0 ) THEN
  232. INFO = -4
  233. ELSE IF( K.LT.0 ) THEN
  234. INFO = -5
  235. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  236. INFO = -8
  237. END IF
  238. IF( INFO.NE.0 ) THEN
  239. CALL XERBLA( 'CHFRK ', -INFO )
  240. RETURN
  241. END IF
  242. *
  243. * Quick return if possible.
  244. *
  245. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  246. * done (it is in CHERK for example) and left in the general case.
  247. *
  248. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  249. $ ( BETA.EQ.ONE ) ) )RETURN
  250. *
  251. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  252. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  253. C( J ) = CZERO
  254. END DO
  255. RETURN
  256. END IF
  257. *
  258. CALPHA = CMPLX( ALPHA, ZERO )
  259. CBETA = CMPLX( BETA, ZERO )
  260. *
  261. * C is N-by-N.
  262. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  263. * If N is even, NISODD = .FALSE., and NK.
  264. *
  265. IF( MOD( N, 2 ).EQ.0 ) THEN
  266. NISODD = .FALSE.
  267. NK = N / 2
  268. ELSE
  269. NISODD = .TRUE.
  270. IF( LOWER ) THEN
  271. N2 = N / 2
  272. N1 = N - N2
  273. ELSE
  274. N1 = N / 2
  275. N2 = N - N1
  276. END IF
  277. END IF
  278. *
  279. IF( NISODD ) THEN
  280. *
  281. * N is odd
  282. *
  283. IF( NORMALTRANSR ) THEN
  284. *
  285. * N is odd and TRANSR = 'N'
  286. *
  287. IF( LOWER ) THEN
  288. *
  289. * N is odd, TRANSR = 'N', and UPLO = 'L'
  290. *
  291. IF( NOTRANS ) THEN
  292. *
  293. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  294. *
  295. CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  296. $ BETA, C( 1 ), N )
  297. CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  298. $ BETA, C( N+1 ), N )
  299. CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  300. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  301. *
  302. ELSE
  303. *
  304. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  305. *
  306. CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  307. $ BETA, C( 1 ), N )
  308. CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  309. $ BETA, C( N+1 ), N )
  310. CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  311. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  312. *
  313. END IF
  314. *
  315. ELSE
  316. *
  317. * N is odd, TRANSR = 'N', and UPLO = 'U'
  318. *
  319. IF( NOTRANS ) THEN
  320. *
  321. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  322. *
  323. CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  324. $ BETA, C( N2+1 ), N )
  325. CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  326. $ BETA, C( N1+1 ), N )
  327. CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  328. $ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  329. *
  330. ELSE
  331. *
  332. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  333. *
  334. CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  335. $ BETA, C( N2+1 ), N )
  336. CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  337. $ BETA, C( N1+1 ), N )
  338. CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  339. $ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  340. *
  341. END IF
  342. *
  343. END IF
  344. *
  345. ELSE
  346. *
  347. * N is odd, and TRANSR = 'C'
  348. *
  349. IF( LOWER ) THEN
  350. *
  351. * N is odd, TRANSR = 'C', and UPLO = 'L'
  352. *
  353. IF( NOTRANS ) THEN
  354. *
  355. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  356. *
  357. CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  358. $ BETA, C( 1 ), N1 )
  359. CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  360. $ BETA, C( 2 ), N1 )
  361. CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  362. $ LDA, A( N1+1, 1 ), LDA, CBETA,
  363. $ C( N1*N1+1 ), N1 )
  364. *
  365. ELSE
  366. *
  367. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  368. *
  369. CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  370. $ BETA, C( 1 ), N1 )
  371. CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  372. $ BETA, C( 2 ), N1 )
  373. CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  374. $ LDA, A( 1, N1+1 ), LDA, CBETA,
  375. $ C( N1*N1+1 ), N1 )
  376. *
  377. END IF
  378. *
  379. ELSE
  380. *
  381. * N is odd, TRANSR = 'C', and UPLO = 'U'
  382. *
  383. IF( NOTRANS ) THEN
  384. *
  385. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  386. *
  387. CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  388. $ BETA, C( N2*N2+1 ), N2 )
  389. CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  390. $ BETA, C( N1*N2+1 ), N2 )
  391. CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  392. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  393. *
  394. ELSE
  395. *
  396. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  397. *
  398. CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  399. $ BETA, C( N2*N2+1 ), N2 )
  400. CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  401. $ BETA, C( N1*N2+1 ), N2 )
  402. CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  403. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  404. *
  405. END IF
  406. *
  407. END IF
  408. *
  409. END IF
  410. *
  411. ELSE
  412. *
  413. * N is even
  414. *
  415. IF( NORMALTRANSR ) THEN
  416. *
  417. * N is even and TRANSR = 'N'
  418. *
  419. IF( LOWER ) THEN
  420. *
  421. * N is even, TRANSR = 'N', and UPLO = 'L'
  422. *
  423. IF( NOTRANS ) THEN
  424. *
  425. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  426. *
  427. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  428. $ BETA, C( 2 ), N+1 )
  429. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  430. $ BETA, C( 1 ), N+1 )
  431. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  432. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  433. $ N+1 )
  434. *
  435. ELSE
  436. *
  437. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  438. *
  439. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  440. $ BETA, C( 2 ), N+1 )
  441. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  442. $ BETA, C( 1 ), N+1 )
  443. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  444. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  445. $ N+1 )
  446. *
  447. END IF
  448. *
  449. ELSE
  450. *
  451. * N is even, TRANSR = 'N', and UPLO = 'U'
  452. *
  453. IF( NOTRANS ) THEN
  454. *
  455. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  456. *
  457. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  458. $ BETA, C( NK+2 ), N+1 )
  459. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  460. $ BETA, C( NK+1 ), N+1 )
  461. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  462. $ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  463. $ N+1 )
  464. *
  465. ELSE
  466. *
  467. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  468. *
  469. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  470. $ BETA, C( NK+2 ), N+1 )
  471. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  472. $ BETA, C( NK+1 ), N+1 )
  473. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  474. $ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  475. $ N+1 )
  476. *
  477. END IF
  478. *
  479. END IF
  480. *
  481. ELSE
  482. *
  483. * N is even, and TRANSR = 'C'
  484. *
  485. IF( LOWER ) THEN
  486. *
  487. * N is even, TRANSR = 'C', and UPLO = 'L'
  488. *
  489. IF( NOTRANS ) THEN
  490. *
  491. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  492. *
  493. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  494. $ BETA, C( NK+1 ), NK )
  495. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  496. $ BETA, C( 1 ), NK )
  497. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  498. $ LDA, A( NK+1, 1 ), LDA, CBETA,
  499. $ C( ( ( NK+1 )*NK )+1 ), NK )
  500. *
  501. ELSE
  502. *
  503. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  504. *
  505. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  506. $ BETA, C( NK+1 ), NK )
  507. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  508. $ BETA, C( 1 ), NK )
  509. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  510. $ LDA, A( 1, NK+1 ), LDA, CBETA,
  511. $ C( ( ( NK+1 )*NK )+1 ), NK )
  512. *
  513. END IF
  514. *
  515. ELSE
  516. *
  517. * N is even, TRANSR = 'C', and UPLO = 'U'
  518. *
  519. IF( NOTRANS ) THEN
  520. *
  521. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  522. *
  523. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  524. $ BETA, C( NK*( NK+1 )+1 ), NK )
  525. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  526. $ BETA, C( NK*NK+1 ), NK )
  527. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  528. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  529. *
  530. ELSE
  531. *
  532. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  533. *
  534. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  535. $ BETA, C( NK*( NK+1 )+1 ), NK )
  536. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  537. $ BETA, C( NK*NK+1 ), NK )
  538. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  539. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  540. *
  541. END IF
  542. *
  543. END IF
  544. *
  545. END IF
  546. *
  547. END IF
  548. *
  549. RETURN
  550. *
  551. * End of CHFRK
  552. *
  553. END