You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrd.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. *> \brief \b CHETRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL D( * ), E( * )
  29. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CHETRD reduces a complex Hermitian matrix A to real symmetric
  39. *> tridiagonal form T by a unitary similarity transformation:
  40. *> Q**H * A * Q = T.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> = 'U': Upper triangle of A is stored;
  50. *> = 'L': Lower triangle of A is stored.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The order of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in,out] A
  60. *> \verbatim
  61. *> A is COMPLEX array, dimension (LDA,N)
  62. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  63. *> N-by-N upper triangular part of A contains the upper
  64. *> triangular part of the matrix A, and the strictly lower
  65. *> triangular part of A is not referenced. If UPLO = 'L', the
  66. *> leading N-by-N lower triangular part of A contains the lower
  67. *> triangular part of the matrix A, and the strictly upper
  68. *> triangular part of A is not referenced.
  69. *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
  70. *> of A are overwritten by the corresponding elements of the
  71. *> tridiagonal matrix T, and the elements above the first
  72. *> superdiagonal, with the array TAU, represent the unitary
  73. *> matrix Q as a product of elementary reflectors; if UPLO
  74. *> = 'L', the diagonal and first subdiagonal of A are over-
  75. *> written by the corresponding elements of the tridiagonal
  76. *> matrix T, and the elements below the first subdiagonal, with
  77. *> the array TAU, represent the unitary matrix Q as a product
  78. *> of elementary reflectors. See Further Details.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] D
  88. *> \verbatim
  89. *> D is REAL array, dimension (N)
  90. *> The diagonal elements of the tridiagonal matrix T:
  91. *> D(i) = A(i,i).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] E
  95. *> \verbatim
  96. *> E is REAL array, dimension (N-1)
  97. *> The off-diagonal elements of the tridiagonal matrix T:
  98. *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] TAU
  102. *> \verbatim
  103. *> TAU is COMPLEX array, dimension (N-1)
  104. *> The scalar factors of the elementary reflectors (see Further
  105. *> Details).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] WORK
  109. *> \verbatim
  110. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  111. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LWORK
  115. *> \verbatim
  116. *> LWORK is INTEGER
  117. *> The dimension of the array WORK. LWORK >= 1.
  118. *> For optimum performance LWORK >= N*NB, where NB is the
  119. *> optimal blocksize.
  120. *>
  121. *> If LWORK = -1, then a workspace query is assumed; the routine
  122. *> only calculates the optimal size of the WORK array, returns
  123. *> this value as the first entry of the WORK array, and no error
  124. *> message related to LWORK is issued by XERBLA.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] INFO
  128. *> \verbatim
  129. *> INFO is INTEGER
  130. *> = 0: successful exit
  131. *> < 0: if INFO = -i, the i-th argument had an illegal value
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \date December 2016
  143. *
  144. *> \ingroup complexHEcomputational
  145. *
  146. *> \par Further Details:
  147. * =====================
  148. *>
  149. *> \verbatim
  150. *>
  151. *> If UPLO = 'U', the matrix Q is represented as a product of elementary
  152. *> reflectors
  153. *>
  154. *> Q = H(n-1) . . . H(2) H(1).
  155. *>
  156. *> Each H(i) has the form
  157. *>
  158. *> H(i) = I - tau * v * v**H
  159. *>
  160. *> where tau is a complex scalar, and v is a complex vector with
  161. *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  162. *> A(1:i-1,i+1), and tau in TAU(i).
  163. *>
  164. *> If UPLO = 'L', the matrix Q is represented as a product of elementary
  165. *> reflectors
  166. *>
  167. *> Q = H(1) H(2) . . . H(n-1).
  168. *>
  169. *> Each H(i) has the form
  170. *>
  171. *> H(i) = I - tau * v * v**H
  172. *>
  173. *> where tau is a complex scalar, and v is a complex vector with
  174. *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  175. *> and tau in TAU(i).
  176. *>
  177. *> The contents of A on exit are illustrated by the following examples
  178. *> with n = 5:
  179. *>
  180. *> if UPLO = 'U': if UPLO = 'L':
  181. *>
  182. *> ( d e v2 v3 v4 ) ( d )
  183. *> ( d e v3 v4 ) ( e d )
  184. *> ( d e v4 ) ( v1 e d )
  185. *> ( d e ) ( v1 v2 e d )
  186. *> ( d ) ( v1 v2 v3 e d )
  187. *>
  188. *> where d and e denote diagonal and off-diagonal elements of T, and vi
  189. *> denotes an element of the vector defining H(i).
  190. *> \endverbatim
  191. *>
  192. * =====================================================================
  193. SUBROUTINE CHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
  194. *
  195. * -- LAPACK computational routine (version 3.7.0) --
  196. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  197. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198. * December 2016
  199. *
  200. * .. Scalar Arguments ..
  201. CHARACTER UPLO
  202. INTEGER INFO, LDA, LWORK, N
  203. * ..
  204. * .. Array Arguments ..
  205. REAL D( * ), E( * )
  206. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  207. * ..
  208. *
  209. * =====================================================================
  210. *
  211. * .. Parameters ..
  212. REAL ONE
  213. PARAMETER ( ONE = 1.0E+0 )
  214. COMPLEX CONE
  215. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  216. * ..
  217. * .. Local Scalars ..
  218. LOGICAL LQUERY, UPPER
  219. INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
  220. $ NBMIN, NX
  221. * ..
  222. * .. External Subroutines ..
  223. EXTERNAL CHER2K, CHETD2, CLATRD, XERBLA
  224. * ..
  225. * .. Intrinsic Functions ..
  226. INTRINSIC MAX
  227. * ..
  228. * .. External Functions ..
  229. LOGICAL LSAME
  230. INTEGER ILAENV
  231. EXTERNAL LSAME, ILAENV
  232. * ..
  233. * .. Executable Statements ..
  234. *
  235. * Test the input parameters
  236. *
  237. INFO = 0
  238. UPPER = LSAME( UPLO, 'U' )
  239. LQUERY = ( LWORK.EQ.-1 )
  240. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  241. INFO = -1
  242. ELSE IF( N.LT.0 ) THEN
  243. INFO = -2
  244. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  245. INFO = -4
  246. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  247. INFO = -9
  248. END IF
  249. *
  250. IF( INFO.EQ.0 ) THEN
  251. *
  252. * Determine the block size.
  253. *
  254. NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
  255. LWKOPT = N*NB
  256. WORK( 1 ) = LWKOPT
  257. END IF
  258. *
  259. IF( INFO.NE.0 ) THEN
  260. CALL XERBLA( 'CHETRD', -INFO )
  261. RETURN
  262. ELSE IF( LQUERY ) THEN
  263. RETURN
  264. END IF
  265. *
  266. * Quick return if possible
  267. *
  268. IF( N.EQ.0 ) THEN
  269. WORK( 1 ) = 1
  270. RETURN
  271. END IF
  272. *
  273. NX = N
  274. IWS = 1
  275. IF( NB.GT.1 .AND. NB.LT.N ) THEN
  276. *
  277. * Determine when to cross over from blocked to unblocked code
  278. * (last block is always handled by unblocked code).
  279. *
  280. NX = MAX( NB, ILAENV( 3, 'CHETRD', UPLO, N, -1, -1, -1 ) )
  281. IF( NX.LT.N ) THEN
  282. *
  283. * Determine if workspace is large enough for blocked code.
  284. *
  285. LDWORK = N
  286. IWS = LDWORK*NB
  287. IF( LWORK.LT.IWS ) THEN
  288. *
  289. * Not enough workspace to use optimal NB: determine the
  290. * minimum value of NB, and reduce NB or force use of
  291. * unblocked code by setting NX = N.
  292. *
  293. NB = MAX( LWORK / LDWORK, 1 )
  294. NBMIN = ILAENV( 2, 'CHETRD', UPLO, N, -1, -1, -1 )
  295. IF( NB.LT.NBMIN )
  296. $ NX = N
  297. END IF
  298. ELSE
  299. NX = N
  300. END IF
  301. ELSE
  302. NB = 1
  303. END IF
  304. *
  305. IF( UPPER ) THEN
  306. *
  307. * Reduce the upper triangle of A.
  308. * Columns 1:kk are handled by the unblocked method.
  309. *
  310. KK = N - ( ( N-NX+NB-1 ) / NB )*NB
  311. DO 20 I = N - NB + 1, KK + 1, -NB
  312. *
  313. * Reduce columns i:i+nb-1 to tridiagonal form and form the
  314. * matrix W which is needed to update the unreduced part of
  315. * the matrix
  316. *
  317. CALL CLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
  318. $ LDWORK )
  319. *
  320. * Update the unreduced submatrix A(1:i-1,1:i-1), using an
  321. * update of the form: A := A - V*W**H - W*V**H
  322. *
  323. CALL CHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
  324. $ A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
  325. *
  326. * Copy superdiagonal elements back into A, and diagonal
  327. * elements into D
  328. *
  329. DO 10 J = I, I + NB - 1
  330. A( J-1, J ) = E( J-1 )
  331. D( J ) = A( J, J )
  332. 10 CONTINUE
  333. 20 CONTINUE
  334. *
  335. * Use unblocked code to reduce the last or only block
  336. *
  337. CALL CHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
  338. ELSE
  339. *
  340. * Reduce the lower triangle of A
  341. *
  342. DO 40 I = 1, N - NX, NB
  343. *
  344. * Reduce columns i:i+nb-1 to tridiagonal form and form the
  345. * matrix W which is needed to update the unreduced part of
  346. * the matrix
  347. *
  348. CALL CLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
  349. $ TAU( I ), WORK, LDWORK )
  350. *
  351. * Update the unreduced submatrix A(i+nb:n,i+nb:n), using
  352. * an update of the form: A := A - V*W**H - W*V**H
  353. *
  354. CALL CHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
  355. $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
  356. $ A( I+NB, I+NB ), LDA )
  357. *
  358. * Copy subdiagonal elements back into A, and diagonal
  359. * elements into D
  360. *
  361. DO 30 J = I, I + NB - 1
  362. A( J+1, J ) = E( J )
  363. D( J ) = A( J, J )
  364. 30 CONTINUE
  365. 40 CONTINUE
  366. *
  367. * Use unblocked code to reduce the last or only block
  368. *
  369. CALL CHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
  370. $ TAU( I ), IINFO )
  371. END IF
  372. *
  373. WORK( 1 ) = LWKOPT
  374. RETURN
  375. *
  376. * End of CHETRD
  377. *
  378. END