You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_porpvgrw.f 6.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  22. * LDAF, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER*1 UPLO
  26. * INTEGER NCOLS, LDA, LDAF
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), AF( LDAF, * )
  30. * DOUBLE PRECISION WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *>
  40. *> ZLA_PORPVGRW computes the reciprocal pivot growth factor
  41. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  42. *> much less than 1, the stability of the LU factorization of the
  43. *> (equilibrated) matrix A could be poor. This also means that the
  44. *> solution X, estimated condition numbers, and error bounds could be
  45. *> unreliable.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] NCOLS
  59. *> \verbatim
  60. *> NCOLS is INTEGER
  61. *> The number of columns of the matrix A. NCOLS >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> On entry, the N-by-N matrix A.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] AF
  77. *> \verbatim
  78. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  79. *> The triangular factor U or L from the Cholesky factorization
  80. *> A = U**T*U or A = L*L**T, as computed by ZPOTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDAF
  84. *> \verbatim
  85. *> LDAF is INTEGER
  86. *> The leading dimension of the array AF. LDAF >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \ingroup complex16POcomputational
  103. *
  104. * =====================================================================
  105. DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  106. $ LDAF, WORK )
  107. *
  108. * -- LAPACK computational routine --
  109. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  110. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  111. *
  112. * .. Scalar Arguments ..
  113. CHARACTER*1 UPLO
  114. INTEGER NCOLS, LDA, LDAF
  115. * ..
  116. * .. Array Arguments ..
  117. COMPLEX*16 A( LDA, * ), AF( LDAF, * )
  118. DOUBLE PRECISION WORK( * )
  119. * ..
  120. *
  121. * =====================================================================
  122. *
  123. * .. Local Scalars ..
  124. INTEGER I, J
  125. DOUBLE PRECISION AMAX, UMAX, RPVGRW
  126. LOGICAL UPPER
  127. COMPLEX*16 ZDUM
  128. * ..
  129. * .. External Functions ..
  130. EXTERNAL LSAME
  131. LOGICAL LSAME
  132. * ..
  133. * .. Intrinsic Functions ..
  134. INTRINSIC ABS, MAX, MIN, REAL, DIMAG
  135. * ..
  136. * .. Statement Functions ..
  137. DOUBLE PRECISION CABS1
  138. * ..
  139. * .. Statement Function Definitions ..
  140. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  141. * ..
  142. * .. Executable Statements ..
  143. UPPER = LSAME( 'Upper', UPLO )
  144. *
  145. * DPOTRF will have factored only the NCOLSxNCOLS leading submatrix,
  146. * so we restrict the growth search to that submatrix and use only
  147. * the first 2*NCOLS workspace entries.
  148. *
  149. RPVGRW = 1.0D+0
  150. DO I = 1, 2*NCOLS
  151. WORK( I ) = 0.0D+0
  152. END DO
  153. *
  154. * Find the max magnitude entry of each column.
  155. *
  156. IF ( UPPER ) THEN
  157. DO J = 1, NCOLS
  158. DO I = 1, J
  159. WORK( NCOLS+J ) =
  160. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  161. END DO
  162. END DO
  163. ELSE
  164. DO J = 1, NCOLS
  165. DO I = J, NCOLS
  166. WORK( NCOLS+J ) =
  167. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  168. END DO
  169. END DO
  170. END IF
  171. *
  172. * Now find the max magnitude entry of each column of the factor in
  173. * AF. No pivoting, so no permutations.
  174. *
  175. IF ( LSAME( 'Upper', UPLO ) ) THEN
  176. DO J = 1, NCOLS
  177. DO I = 1, J
  178. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  179. END DO
  180. END DO
  181. ELSE
  182. DO J = 1, NCOLS
  183. DO I = J, NCOLS
  184. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  185. END DO
  186. END DO
  187. END IF
  188. *
  189. * Compute the *inverse* of the max element growth factor. Dividing
  190. * by zero would imply the largest entry of the factor's column is
  191. * zero. Than can happen when either the column of A is zero or
  192. * massive pivots made the factor underflow to zero. Neither counts
  193. * as growth in itself, so simply ignore terms with zero
  194. * denominators.
  195. *
  196. IF ( LSAME( 'Upper', UPLO ) ) THEN
  197. DO I = 1, NCOLS
  198. UMAX = WORK( I )
  199. AMAX = WORK( NCOLS+I )
  200. IF ( UMAX /= 0.0D+0 ) THEN
  201. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  202. END IF
  203. END DO
  204. ELSE
  205. DO I = 1, NCOLS
  206. UMAX = WORK( I )
  207. AMAX = WORK( NCOLS+I )
  208. IF ( UMAX /= 0.0D+0 ) THEN
  209. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  210. END IF
  211. END DO
  212. END IF
  213. ZLA_PORPVGRW = RPVGRW
  214. *
  215. * End of ZLA_PORPVGRW
  216. *
  217. END