You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sla_porpvgrw.f 5.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. *> \brief \b SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER*1 UPLO
  25. * INTEGER NCOLS, LDA, LDAF
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), AF( LDAF, * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *>
  38. *> SLA_PORPVGRW computes the reciprocal pivot growth factor
  39. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  40. *> much less than 1, the stability of the LU factorization of the
  41. *> (equilibrated) matrix A could be poor. This also means that the
  42. *> solution X, estimated condition numbers, and error bounds could be
  43. *> unreliable.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] NCOLS
  57. *> \verbatim
  58. *> NCOLS is INTEGER
  59. *> The number of columns of the matrix A. NCOLS >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] A
  63. *> \verbatim
  64. *> A is REAL array, dimension (LDA,N)
  65. *> On entry, the N-by-N matrix A.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] LDA
  69. *> \verbatim
  70. *> LDA is INTEGER
  71. *> The leading dimension of the array A. LDA >= max(1,N).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] AF
  75. *> \verbatim
  76. *> AF is REAL array, dimension (LDAF,N)
  77. *> The triangular factor U or L from the Cholesky factorization
  78. *> A = U**T*U or A = L*L**T, as computed by SPOTRF.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDAF
  82. *> \verbatim
  83. *> LDAF is INTEGER
  84. *> The leading dimension of the array AF. LDAF >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] WORK
  88. *> \verbatim
  89. *> WORK is REAL array, dimension (2*N)
  90. *> \endverbatim
  91. *
  92. * Authors:
  93. * ========
  94. *
  95. *> \author Univ. of Tennessee
  96. *> \author Univ. of California Berkeley
  97. *> \author Univ. of Colorado Denver
  98. *> \author NAG Ltd.
  99. *
  100. *> \ingroup realPOcomputational
  101. *
  102. * =====================================================================
  103. REAL FUNCTION SLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
  104. *
  105. * -- LAPACK computational routine --
  106. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  107. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  108. *
  109. * .. Scalar Arguments ..
  110. CHARACTER*1 UPLO
  111. INTEGER NCOLS, LDA, LDAF
  112. * ..
  113. * .. Array Arguments ..
  114. REAL A( LDA, * ), AF( LDAF, * ), WORK( * )
  115. * ..
  116. *
  117. * =====================================================================
  118. *
  119. * .. Local Scalars ..
  120. INTEGER I, J
  121. REAL AMAX, UMAX, RPVGRW
  122. LOGICAL UPPER
  123. * ..
  124. * .. Intrinsic Functions ..
  125. INTRINSIC ABS, MAX, MIN
  126. * ..
  127. * .. External Functions ..
  128. EXTERNAL LSAME
  129. LOGICAL LSAME
  130. * ..
  131. * .. Executable Statements ..
  132. *
  133. UPPER = LSAME( 'Upper', UPLO )
  134. *
  135. * SPOTRF will have factored only the NCOLSxNCOLS leading submatrix,
  136. * so we restrict the growth search to that submatrix and use only
  137. * the first 2*NCOLS workspace entries.
  138. *
  139. RPVGRW = 1.0
  140. DO I = 1, 2*NCOLS
  141. WORK( I ) = 0.0
  142. END DO
  143. *
  144. * Find the max magnitude entry of each column.
  145. *
  146. IF ( UPPER ) THEN
  147. DO J = 1, NCOLS
  148. DO I = 1, J
  149. WORK( NCOLS+J ) =
  150. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  151. END DO
  152. END DO
  153. ELSE
  154. DO J = 1, NCOLS
  155. DO I = J, NCOLS
  156. WORK( NCOLS+J ) =
  157. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  158. END DO
  159. END DO
  160. END IF
  161. *
  162. * Now find the max magnitude entry of each column of the factor in
  163. * AF. No pivoting, so no permutations.
  164. *
  165. IF ( LSAME( 'Upper', UPLO ) ) THEN
  166. DO J = 1, NCOLS
  167. DO I = 1, J
  168. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  169. END DO
  170. END DO
  171. ELSE
  172. DO J = 1, NCOLS
  173. DO I = J, NCOLS
  174. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  175. END DO
  176. END DO
  177. END IF
  178. *
  179. * Compute the *inverse* of the max element growth factor. Dividing
  180. * by zero would imply the largest entry of the factor's column is
  181. * zero. Than can happen when either the column of A is zero or
  182. * massive pivots made the factor underflow to zero. Neither counts
  183. * as growth in itself, so simply ignore terms with zero
  184. * denominators.
  185. *
  186. IF ( LSAME( 'Upper', UPLO ) ) THEN
  187. DO I = 1, NCOLS
  188. UMAX = WORK( I )
  189. AMAX = WORK( NCOLS+I )
  190. IF ( UMAX /= 0.0 ) THEN
  191. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  192. END IF
  193. END DO
  194. ELSE
  195. DO I = 1, NCOLS
  196. UMAX = WORK( I )
  197. AMAX = WORK( NCOLS+I )
  198. IF ( UMAX /= 0.0 ) THEN
  199. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  200. END IF
  201. END DO
  202. END IF
  203. SLA_PORPVGRW = RPVGRW
  204. *
  205. * End of SLA_PORPVGRW
  206. *
  207. END