You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_porpvgrw.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. *> \brief \b DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  22. * LDAF, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER*1 UPLO
  26. * INTEGER NCOLS, LDA, LDAF
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *>
  39. *> DLA_PORPVGRW computes the reciprocal pivot growth factor
  40. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  41. *> much less than 1, the stability of the LU factorization of the
  42. *> (equilibrated) matrix A could be poor. This also means that the
  43. *> solution X, estimated condition numbers, and error bounds could be
  44. *> unreliable.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': Upper triangle of A is stored;
  54. *> = 'L': Lower triangle of A is stored.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] NCOLS
  58. *> \verbatim
  59. *> NCOLS is INTEGER
  60. *> The number of columns of the matrix A. NCOLS >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  66. *> On entry, the N-by-N matrix A.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] LDA
  70. *> \verbatim
  71. *> LDA is INTEGER
  72. *> The leading dimension of the array A. LDA >= max(1,N).
  73. *> \endverbatim
  74. *>
  75. *> \param[in] AF
  76. *> \verbatim
  77. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  78. *> The triangular factor U or L from the Cholesky factorization
  79. *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDAF
  83. *> \verbatim
  84. *> LDAF is INTEGER
  85. *> The leading dimension of the array AF. LDAF >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] WORK
  89. *> \verbatim
  90. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  91. *> \endverbatim
  92. *
  93. * Authors:
  94. * ========
  95. *
  96. *> \author Univ. of Tennessee
  97. *> \author Univ. of California Berkeley
  98. *> \author Univ. of Colorado Denver
  99. *> \author NAG Ltd.
  100. *
  101. *> \ingroup doublePOcomputational
  102. *
  103. * =====================================================================
  104. DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  105. $ LDAF, WORK )
  106. *
  107. * -- LAPACK computational routine --
  108. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  109. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  110. *
  111. * .. Scalar Arguments ..
  112. CHARACTER*1 UPLO
  113. INTEGER NCOLS, LDA, LDAF
  114. * ..
  115. * .. Array Arguments ..
  116. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * )
  117. * ..
  118. *
  119. * =====================================================================
  120. *
  121. * .. Local Scalars ..
  122. INTEGER I, J
  123. DOUBLE PRECISION AMAX, UMAX, RPVGRW
  124. LOGICAL UPPER
  125. * ..
  126. * .. Intrinsic Functions ..
  127. INTRINSIC ABS, MAX, MIN
  128. * ..
  129. * .. External Functions ..
  130. EXTERNAL LSAME
  131. LOGICAL LSAME
  132. * ..
  133. * .. Executable Statements ..
  134. *
  135. UPPER = LSAME( 'Upper', UPLO )
  136. *
  137. * DPOTRF will have factored only the NCOLSxNCOLS leading submatrix,
  138. * so we restrict the growth search to that submatrix and use only
  139. * the first 2*NCOLS workspace entries.
  140. *
  141. RPVGRW = 1.0D+0
  142. DO I = 1, 2*NCOLS
  143. WORK( I ) = 0.0D+0
  144. END DO
  145. *
  146. * Find the max magnitude entry of each column.
  147. *
  148. IF ( UPPER ) THEN
  149. DO J = 1, NCOLS
  150. DO I = 1, J
  151. WORK( NCOLS+J ) =
  152. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  153. END DO
  154. END DO
  155. ELSE
  156. DO J = 1, NCOLS
  157. DO I = J, NCOLS
  158. WORK( NCOLS+J ) =
  159. $ MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
  160. END DO
  161. END DO
  162. END IF
  163. *
  164. * Now find the max magnitude entry of each column of the factor in
  165. * AF. No pivoting, so no permutations.
  166. *
  167. IF ( LSAME( 'Upper', UPLO ) ) THEN
  168. DO J = 1, NCOLS
  169. DO I = 1, J
  170. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  171. END DO
  172. END DO
  173. ELSE
  174. DO J = 1, NCOLS
  175. DO I = J, NCOLS
  176. WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
  177. END DO
  178. END DO
  179. END IF
  180. *
  181. * Compute the *inverse* of the max element growth factor. Dividing
  182. * by zero would imply the largest entry of the factor's column is
  183. * zero. Than can happen when either the column of A is zero or
  184. * massive pivots made the factor underflow to zero. Neither counts
  185. * as growth in itself, so simply ignore terms with zero
  186. * denominators.
  187. *
  188. IF ( LSAME( 'Upper', UPLO ) ) THEN
  189. DO I = 1, NCOLS
  190. UMAX = WORK( I )
  191. AMAX = WORK( NCOLS+I )
  192. IF ( UMAX /= 0.0D+0 ) THEN
  193. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  194. END IF
  195. END DO
  196. ELSE
  197. DO I = 1, NCOLS
  198. UMAX = WORK( I )
  199. AMAX = WORK( NCOLS+I )
  200. IF ( UMAX /= 0.0D+0 ) THEN
  201. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  202. END IF
  203. END DO
  204. END IF
  205. DLA_PORPVGRW = RPVGRW
  206. *
  207. * End of DLA_PORPVGRW
  208. *
  209. END