You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztpttf.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. *> \brief \b ZTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTPTTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztpttf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztpttf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztpttf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 AP( 0: * ), ARF( 0: * )
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> ZTPTTF copies a triangular matrix A from standard packed format (TP)
  37. *> to rectangular full packed format (TF).
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] TRANSR
  44. *> \verbatim
  45. *> TRANSR is CHARACTER*1
  46. *> = 'N': ARF in Normal format is wanted;
  47. *> = 'C': ARF in Conjugate-transpose format is wanted.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': A is upper triangular;
  54. *> = 'L': A is lower triangular.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] AP
  64. *> \verbatim
  65. *> AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
  66. *> On entry, the upper or lower triangular matrix A, packed
  67. *> columnwise in a linear array. The j-th column of A is stored
  68. *> in the array AP as follows:
  69. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  70. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  71. *> \endverbatim
  72. *>
  73. *> \param[out] ARF
  74. *> \verbatim
  75. *> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
  76. *> On exit, the upper or lower triangular matrix A stored in
  77. *> RFP format. For a further discussion see Notes below.
  78. *> \endverbatim
  79. *>
  80. *> \param[out] INFO
  81. *> \verbatim
  82. *> INFO is INTEGER
  83. *> = 0: successful exit
  84. *> < 0: if INFO = -i, the i-th argument had an illegal value
  85. *> \endverbatim
  86. *
  87. * Authors:
  88. * ========
  89. *
  90. *> \author Univ. of Tennessee
  91. *> \author Univ. of California Berkeley
  92. *> \author Univ. of Colorado Denver
  93. *> \author NAG Ltd.
  94. *
  95. *> \date December 2016
  96. *
  97. *> \ingroup complex16OTHERcomputational
  98. *
  99. *> \par Further Details:
  100. * =====================
  101. *>
  102. *> \verbatim
  103. *>
  104. *> We first consider Standard Packed Format when N is even.
  105. *> We give an example where N = 6.
  106. *>
  107. *> AP is Upper AP is Lower
  108. *>
  109. *> 00 01 02 03 04 05 00
  110. *> 11 12 13 14 15 10 11
  111. *> 22 23 24 25 20 21 22
  112. *> 33 34 35 30 31 32 33
  113. *> 44 45 40 41 42 43 44
  114. *> 55 50 51 52 53 54 55
  115. *>
  116. *>
  117. *> Let TRANSR = 'N'. RFP holds AP as follows:
  118. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  119. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  120. *> conjugate-transpose of the first three columns of AP upper.
  121. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  122. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  123. *> conjugate-transpose of the last three columns of AP lower.
  124. *> To denote conjugate we place -- above the element. This covers the
  125. *> case N even and TRANSR = 'N'.
  126. *>
  127. *> RFP A RFP A
  128. *>
  129. *> -- -- --
  130. *> 03 04 05 33 43 53
  131. *> -- --
  132. *> 13 14 15 00 44 54
  133. *> --
  134. *> 23 24 25 10 11 55
  135. *>
  136. *> 33 34 35 20 21 22
  137. *> --
  138. *> 00 44 45 30 31 32
  139. *> -- --
  140. *> 01 11 55 40 41 42
  141. *> -- -- --
  142. *> 02 12 22 50 51 52
  143. *>
  144. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  145. *> transpose of RFP A above. One therefore gets:
  146. *>
  147. *>
  148. *> RFP A RFP A
  149. *>
  150. *> -- -- -- -- -- -- -- -- -- --
  151. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  152. *> -- -- -- -- -- -- -- -- -- --
  153. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  154. *> -- -- -- -- -- -- -- -- -- --
  155. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  156. *>
  157. *>
  158. *> We next consider Standard Packed Format when N is odd.
  159. *> We give an example where N = 5.
  160. *>
  161. *> AP is Upper AP is Lower
  162. *>
  163. *> 00 01 02 03 04 00
  164. *> 11 12 13 14 10 11
  165. *> 22 23 24 20 21 22
  166. *> 33 34 30 31 32 33
  167. *> 44 40 41 42 43 44
  168. *>
  169. *>
  170. *> Let TRANSR = 'N'. RFP holds AP as follows:
  171. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  172. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  173. *> conjugate-transpose of the first two columns of AP upper.
  174. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  175. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  176. *> conjugate-transpose of the last two columns of AP lower.
  177. *> To denote conjugate we place -- above the element. This covers the
  178. *> case N odd and TRANSR = 'N'.
  179. *>
  180. *> RFP A RFP A
  181. *>
  182. *> -- --
  183. *> 02 03 04 00 33 43
  184. *> --
  185. *> 12 13 14 10 11 44
  186. *>
  187. *> 22 23 24 20 21 22
  188. *> --
  189. *> 00 33 34 30 31 32
  190. *> -- --
  191. *> 01 11 44 40 41 42
  192. *>
  193. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  194. *> transpose of RFP A above. One therefore gets:
  195. *>
  196. *>
  197. *> RFP A RFP A
  198. *>
  199. *> -- -- -- -- -- -- -- -- --
  200. *> 02 12 22 00 01 00 10 20 30 40 50
  201. *> -- -- -- -- -- -- -- -- --
  202. *> 03 13 23 33 11 33 11 21 31 41 51
  203. *> -- -- -- -- -- -- -- -- --
  204. *> 04 14 24 34 44 43 44 22 32 42 52
  205. *> \endverbatim
  206. *>
  207. * =====================================================================
  208. SUBROUTINE ZTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  209. *
  210. * -- LAPACK computational routine (version 3.7.0) --
  211. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  212. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213. * December 2016
  214. *
  215. * .. Scalar Arguments ..
  216. CHARACTER TRANSR, UPLO
  217. INTEGER INFO, N
  218. * ..
  219. * .. Array Arguments ..
  220. COMPLEX*16 AP( 0: * ), ARF( 0: * )
  221. *
  222. * =====================================================================
  223. *
  224. * .. Parameters ..
  225. * ..
  226. * .. Local Scalars ..
  227. LOGICAL LOWER, NISODD, NORMALTRANSR
  228. INTEGER N1, N2, K, NT
  229. INTEGER I, J, IJ
  230. INTEGER IJP, JP, LDA, JS
  231. * ..
  232. * .. External Functions ..
  233. LOGICAL LSAME
  234. EXTERNAL LSAME
  235. * ..
  236. * .. External Subroutines ..
  237. EXTERNAL XERBLA
  238. * ..
  239. * .. Intrinsic Functions ..
  240. INTRINSIC DCONJG, MOD
  241. * ..
  242. * .. Executable Statements ..
  243. *
  244. * Test the input parameters.
  245. *
  246. INFO = 0
  247. NORMALTRANSR = LSAME( TRANSR, 'N' )
  248. LOWER = LSAME( UPLO, 'L' )
  249. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  250. INFO = -1
  251. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  252. INFO = -2
  253. ELSE IF( N.LT.0 ) THEN
  254. INFO = -3
  255. END IF
  256. IF( INFO.NE.0 ) THEN
  257. CALL XERBLA( 'ZTPTTF', -INFO )
  258. RETURN
  259. END IF
  260. *
  261. * Quick return if possible
  262. *
  263. IF( N.EQ.0 )
  264. $ RETURN
  265. *
  266. IF( N.EQ.1 ) THEN
  267. IF( NORMALTRANSR ) THEN
  268. ARF( 0 ) = AP( 0 )
  269. ELSE
  270. ARF( 0 ) = DCONJG( AP( 0 ) )
  271. END IF
  272. RETURN
  273. END IF
  274. *
  275. * Size of array ARF(0:NT-1)
  276. *
  277. NT = N*( N+1 ) / 2
  278. *
  279. * Set N1 and N2 depending on LOWER
  280. *
  281. IF( LOWER ) THEN
  282. N2 = N / 2
  283. N1 = N - N2
  284. ELSE
  285. N1 = N / 2
  286. N2 = N - N1
  287. END IF
  288. *
  289. * If N is odd, set NISODD = .TRUE.
  290. * If N is even, set K = N/2 and NISODD = .FALSE.
  291. *
  292. * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  293. * where noe = 0 if n is even, noe = 1 if n is odd
  294. *
  295. IF( MOD( N, 2 ).EQ.0 ) THEN
  296. K = N / 2
  297. NISODD = .FALSE.
  298. LDA = N + 1
  299. ELSE
  300. NISODD = .TRUE.
  301. LDA = N
  302. END IF
  303. *
  304. * ARF^C has lda rows and n+1-noe cols
  305. *
  306. IF( .NOT.NORMALTRANSR )
  307. $ LDA = ( N+1 ) / 2
  308. *
  309. * start execution: there are eight cases
  310. *
  311. IF( NISODD ) THEN
  312. *
  313. * N is odd
  314. *
  315. IF( NORMALTRANSR ) THEN
  316. *
  317. * N is odd and TRANSR = 'N'
  318. *
  319. IF( LOWER ) THEN
  320. *
  321. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  322. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  323. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
  324. *
  325. IJP = 0
  326. JP = 0
  327. DO J = 0, N2
  328. DO I = J, N - 1
  329. IJ = I + JP
  330. ARF( IJ ) = AP( IJP )
  331. IJP = IJP + 1
  332. END DO
  333. JP = JP + LDA
  334. END DO
  335. DO I = 0, N2 - 1
  336. DO J = 1 + I, N2
  337. IJ = I + J*LDA
  338. ARF( IJ ) = DCONJG( AP( IJP ) )
  339. IJP = IJP + 1
  340. END DO
  341. END DO
  342. *
  343. ELSE
  344. *
  345. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  346. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  347. * T1 -> a(n2), T2 -> a(n1), S -> a(0)
  348. *
  349. IJP = 0
  350. DO J = 0, N1 - 1
  351. IJ = N2 + J
  352. DO I = 0, J
  353. ARF( IJ ) = DCONJG( AP( IJP ) )
  354. IJP = IJP + 1
  355. IJ = IJ + LDA
  356. END DO
  357. END DO
  358. JS = 0
  359. DO J = N1, N - 1
  360. IJ = JS
  361. DO IJ = JS, JS + J
  362. ARF( IJ ) = AP( IJP )
  363. IJP = IJP + 1
  364. END DO
  365. JS = JS + LDA
  366. END DO
  367. *
  368. END IF
  369. *
  370. ELSE
  371. *
  372. * N is odd and TRANSR = 'C'
  373. *
  374. IF( LOWER ) THEN
  375. *
  376. * SRPA for LOWER, TRANSPOSE and N is odd
  377. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  378. * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  379. *
  380. IJP = 0
  381. DO I = 0, N2
  382. DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  383. ARF( IJ ) = DCONJG( AP( IJP ) )
  384. IJP = IJP + 1
  385. END DO
  386. END DO
  387. JS = 1
  388. DO J = 0, N2 - 1
  389. DO IJ = JS, JS + N2 - J - 1
  390. ARF( IJ ) = AP( IJP )
  391. IJP = IJP + 1
  392. END DO
  393. JS = JS + LDA + 1
  394. END DO
  395. *
  396. ELSE
  397. *
  398. * SRPA for UPPER, TRANSPOSE and N is odd
  399. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  400. * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  401. *
  402. IJP = 0
  403. JS = N2*LDA
  404. DO J = 0, N1 - 1
  405. DO IJ = JS, JS + J
  406. ARF( IJ ) = AP( IJP )
  407. IJP = IJP + 1
  408. END DO
  409. JS = JS + LDA
  410. END DO
  411. DO I = 0, N1
  412. DO IJ = I, I + ( N1+I )*LDA, LDA
  413. ARF( IJ ) = DCONJG( AP( IJP ) )
  414. IJP = IJP + 1
  415. END DO
  416. END DO
  417. *
  418. END IF
  419. *
  420. END IF
  421. *
  422. ELSE
  423. *
  424. * N is even
  425. *
  426. IF( NORMALTRANSR ) THEN
  427. *
  428. * N is even and TRANSR = 'N'
  429. *
  430. IF( LOWER ) THEN
  431. *
  432. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  433. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  434. * T1 -> a(1), T2 -> a(0), S -> a(k+1)
  435. *
  436. IJP = 0
  437. JP = 0
  438. DO J = 0, K - 1
  439. DO I = J, N - 1
  440. IJ = 1 + I + JP
  441. ARF( IJ ) = AP( IJP )
  442. IJP = IJP + 1
  443. END DO
  444. JP = JP + LDA
  445. END DO
  446. DO I = 0, K - 1
  447. DO J = I, K - 1
  448. IJ = I + J*LDA
  449. ARF( IJ ) = DCONJG( AP( IJP ) )
  450. IJP = IJP + 1
  451. END DO
  452. END DO
  453. *
  454. ELSE
  455. *
  456. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  457. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  458. * T1 -> a(k+1), T2 -> a(k), S -> a(0)
  459. *
  460. IJP = 0
  461. DO J = 0, K - 1
  462. IJ = K + 1 + J
  463. DO I = 0, J
  464. ARF( IJ ) = DCONJG( AP( IJP ) )
  465. IJP = IJP + 1
  466. IJ = IJ + LDA
  467. END DO
  468. END DO
  469. JS = 0
  470. DO J = K, N - 1
  471. IJ = JS
  472. DO IJ = JS, JS + J
  473. ARF( IJ ) = AP( IJP )
  474. IJP = IJP + 1
  475. END DO
  476. JS = JS + LDA
  477. END DO
  478. *
  479. END IF
  480. *
  481. ELSE
  482. *
  483. * N is even and TRANSR = 'C'
  484. *
  485. IF( LOWER ) THEN
  486. *
  487. * SRPA for LOWER, TRANSPOSE and N is even (see paper)
  488. * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  489. * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  490. *
  491. IJP = 0
  492. DO I = 0, K - 1
  493. DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  494. ARF( IJ ) = DCONJG( AP( IJP ) )
  495. IJP = IJP + 1
  496. END DO
  497. END DO
  498. JS = 0
  499. DO J = 0, K - 1
  500. DO IJ = JS, JS + K - J - 1
  501. ARF( IJ ) = AP( IJP )
  502. IJP = IJP + 1
  503. END DO
  504. JS = JS + LDA + 1
  505. END DO
  506. *
  507. ELSE
  508. *
  509. * SRPA for UPPER, TRANSPOSE and N is even (see paper)
  510. * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
  511. * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  512. *
  513. IJP = 0
  514. JS = ( K+1 )*LDA
  515. DO J = 0, K - 1
  516. DO IJ = JS, JS + J
  517. ARF( IJ ) = AP( IJP )
  518. IJP = IJP + 1
  519. END DO
  520. JS = JS + LDA
  521. END DO
  522. DO I = 0, K - 1
  523. DO IJ = I, I + ( K+I )*LDA, LDA
  524. ARF( IJ ) = DCONJG( AP( IJP ) )
  525. IJP = IJP + 1
  526. END DO
  527. END DO
  528. *
  529. END IF
  530. *
  531. END IF
  532. *
  533. END IF
  534. *
  535. RETURN
  536. *
  537. * End of ZTPTTF
  538. *
  539. END