You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlanhe.f 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. *> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANHE + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANHE returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex hermitian matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANHE
  44. *> \verbatim
  45. *>
  46. *> ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANHE as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> hermitian matrix A is to be referenced.
  75. *> = 'U': Upper triangular part of A is referenced
  76. *> = 'L': Lower triangular part of A is referenced
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, ZLANHE is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] A
  87. *> \verbatim
  88. *> A is COMPLEX*16 array, dimension (LDA,N)
  89. *> The hermitian matrix A. If UPLO = 'U', the leading n by n
  90. *> upper triangular part of A contains the upper triangular part
  91. *> of the matrix A, and the strictly lower triangular part of A
  92. *> is not referenced. If UPLO = 'L', the leading n by n lower
  93. *> triangular part of A contains the lower triangular part of
  94. *> the matrix A, and the strictly upper triangular part of A is
  95. *> not referenced. Note that the imaginary parts of the diagonal
  96. *> elements need not be set and are assumed to be zero.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> The leading dimension of the array A. LDA >= max(N,1).
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  109. *> WORK is not referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date December 2016
  121. *
  122. *> \ingroup complex16HEauxiliary
  123. *
  124. * =====================================================================
  125. DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  126. *
  127. * -- LAPACK auxiliary routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. IMPLICIT NONE
  133. * .. Scalar Arguments ..
  134. CHARACTER NORM, UPLO
  135. INTEGER LDA, N
  136. * ..
  137. * .. Array Arguments ..
  138. DOUBLE PRECISION WORK( * )
  139. COMPLEX*16 A( LDA, * )
  140. * ..
  141. *
  142. * =====================================================================
  143. *
  144. * .. Parameters ..
  145. DOUBLE PRECISION ONE, ZERO
  146. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  147. * ..
  148. * .. Local Scalars ..
  149. INTEGER I, J
  150. DOUBLE PRECISION ABSA, SUM, VALUE
  151. * ..
  152. * .. Local Arrays ..
  153. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME, DISNAN
  157. EXTERNAL LSAME, DISNAN
  158. * ..
  159. * .. External Subroutines ..
  160. EXTERNAL ZLASSQ, DCOMBSSQ
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC ABS, DBLE, SQRT
  164. * ..
  165. * .. Executable Statements ..
  166. *
  167. IF( N.EQ.0 ) THEN
  168. VALUE = ZERO
  169. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  170. *
  171. * Find max(abs(A(i,j))).
  172. *
  173. VALUE = ZERO
  174. IF( LSAME( UPLO, 'U' ) ) THEN
  175. DO 20 J = 1, N
  176. DO 10 I = 1, J - 1
  177. SUM = ABS( A( I, J ) )
  178. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  179. 10 CONTINUE
  180. SUM = ABS( DBLE( A( J, J ) ) )
  181. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  182. 20 CONTINUE
  183. ELSE
  184. DO 40 J = 1, N
  185. SUM = ABS( DBLE( A( J, J ) ) )
  186. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  187. DO 30 I = J + 1, N
  188. SUM = ABS( A( I, J ) )
  189. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  190. 30 CONTINUE
  191. 40 CONTINUE
  192. END IF
  193. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  194. $ ( NORM.EQ.'1' ) ) THEN
  195. *
  196. * Find normI(A) ( = norm1(A), since A is hermitian).
  197. *
  198. VALUE = ZERO
  199. IF( LSAME( UPLO, 'U' ) ) THEN
  200. DO 60 J = 1, N
  201. SUM = ZERO
  202. DO 50 I = 1, J - 1
  203. ABSA = ABS( A( I, J ) )
  204. SUM = SUM + ABSA
  205. WORK( I ) = WORK( I ) + ABSA
  206. 50 CONTINUE
  207. WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
  208. 60 CONTINUE
  209. DO 70 I = 1, N
  210. SUM = WORK( I )
  211. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  212. 70 CONTINUE
  213. ELSE
  214. DO 80 I = 1, N
  215. WORK( I ) = ZERO
  216. 80 CONTINUE
  217. DO 100 J = 1, N
  218. SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
  219. DO 90 I = J + 1, N
  220. ABSA = ABS( A( I, J ) )
  221. SUM = SUM + ABSA
  222. WORK( I ) = WORK( I ) + ABSA
  223. 90 CONTINUE
  224. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  225. 100 CONTINUE
  226. END IF
  227. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  228. *
  229. * Find normF(A).
  230. * SSQ(1) is scale
  231. * SSQ(2) is sum-of-squares
  232. * For better accuracy, sum each column separately.
  233. *
  234. SSQ( 1 ) = ZERO
  235. SSQ( 2 ) = ONE
  236. *
  237. * Sum off-diagonals
  238. *
  239. IF( LSAME( UPLO, 'U' ) ) THEN
  240. DO 110 J = 2, N
  241. COLSSQ( 1 ) = ZERO
  242. COLSSQ( 2 ) = ONE
  243. CALL ZLASSQ( J-1, A( 1, J ), 1,
  244. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  245. CALL DCOMBSSQ( SSQ, COLSSQ )
  246. 110 CONTINUE
  247. ELSE
  248. DO 120 J = 1, N - 1
  249. COLSSQ( 1 ) = ZERO
  250. COLSSQ( 2 ) = ONE
  251. CALL ZLASSQ( N-J, A( J+1, J ), 1,
  252. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  253. CALL DCOMBSSQ( SSQ, COLSSQ )
  254. 120 CONTINUE
  255. END IF
  256. SSQ( 2 ) = 2*SSQ( 2 )
  257. *
  258. * Sum diagonal
  259. *
  260. DO 130 I = 1, N
  261. IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
  262. ABSA = ABS( DBLE( A( I, I ) ) )
  263. IF( SSQ( 1 ).LT.ABSA ) THEN
  264. SSQ( 2 ) = ONE + SSQ( 2 )*( SSQ( 1 ) / ABSA )**2
  265. SSQ( 1 ) = ABSA
  266. ELSE
  267. SSQ( 2 ) = SSQ( 2 ) + ( ABSA / SSQ( 1 ) )**2
  268. END IF
  269. END IF
  270. 130 CONTINUE
  271. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  272. END IF
  273. *
  274. ZLANHE = VALUE
  275. RETURN
  276. *
  277. * End of ZLANHE
  278. *
  279. END