You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlamtsqr.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. *> \brief \b ZLAMTSQR
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  7. * $ LDT, C, LDC, WORK, LWORK, INFO )
  8. *
  9. *
  10. * .. Scalar Arguments ..
  11. * CHARACTER SIDE, TRANS
  12. * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  13. * ..
  14. * .. Array Arguments ..
  15. * COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
  16. * $ T( LDT, * )
  17. *> \par Purpose:
  18. * =============
  19. *>
  20. *> \verbatim
  21. *>
  22. *> ZLAMTSQR overwrites the general complex M-by-N matrix C with
  23. *>
  24. *>
  25. *> SIDE = 'L' SIDE = 'R'
  26. *> TRANS = 'N': Q * C C * Q
  27. *> TRANS = 'C': Q**H * C C * Q**H
  28. *> where Q is a real orthogonal matrix defined as the product
  29. *> of blocked elementary reflectors computed by tall skinny
  30. *> QR factorization (ZLATSQR)
  31. *> \endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. *> \param[in] SIDE
  37. *> \verbatim
  38. *> SIDE is CHARACTER*1
  39. *> = 'L': apply Q or Q**H from the Left;
  40. *> = 'R': apply Q or Q**H from the Right.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] TRANS
  44. *> \verbatim
  45. *> TRANS is CHARACTER*1
  46. *> = 'N': No transpose, apply Q;
  47. *> = 'C': Conjugate Transpose, apply Q**H.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] M
  51. *> \verbatim
  52. *> M is INTEGER
  53. *> The number of rows of the matrix A. M >=0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of columns of the matrix C. M >= N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] K
  63. *> \verbatim
  64. *> K is INTEGER
  65. *> The number of elementary reflectors whose product defines
  66. *> the matrix Q.
  67. *> N >= K >= 0;
  68. *>
  69. *> \endverbatim
  70. *>
  71. *> \param[in] MB
  72. *> \verbatim
  73. *> MB is INTEGER
  74. *> The block size to be used in the blocked QR.
  75. *> MB > N. (must be the same as DLATSQR)
  76. *> \endverbatim
  77. *>
  78. *> \param[in] NB
  79. *> \verbatim
  80. *> NB is INTEGER
  81. *> The column block size to be used in the blocked QR.
  82. *> N >= NB >= 1.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] A
  86. *> \verbatim
  87. *> A is COMPLEX*16 array, dimension (LDA,K)
  88. *> The i-th column must contain the vector which defines the
  89. *> blockedelementary reflector H(i), for i = 1,2,...,k, as
  90. *> returned by DLATSQR in the first k columns of
  91. *> its array argument A.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDA
  95. *> \verbatim
  96. *> LDA is INTEGER
  97. *> The leading dimension of the array A.
  98. *> If SIDE = 'L', LDA >= max(1,M);
  99. *> if SIDE = 'R', LDA >= max(1,N).
  100. *> \endverbatim
  101. *>
  102. *> \param[in] T
  103. *> \verbatim
  104. *> T is COMPLEX*16 array, dimension
  105. *> ( N * Number of blocks(CEIL(M-K/MB-K)),
  106. *> The blocked upper triangular block reflectors stored in compact form
  107. *> as a sequence of upper triangular blocks. See below
  108. *> for further details.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDT
  112. *> \verbatim
  113. *> LDT is INTEGER
  114. *> The leading dimension of the array T. LDT >= NB.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] C
  118. *> \verbatim
  119. *> C is COMPLEX*16 array, dimension (LDC,N)
  120. *> On entry, the M-by-N matrix C.
  121. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDC
  125. *> \verbatim
  126. *> LDC is INTEGER
  127. *> The leading dimension of the array C. LDC >= max(1,M).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  133. *>
  134. *> \endverbatim
  135. *> \param[in] LWORK
  136. *> \verbatim
  137. *> LWORK is INTEGER
  138. *> The dimension of the array WORK.
  139. *>
  140. *> If SIDE = 'L', LWORK >= max(1,N)*NB;
  141. *> if SIDE = 'R', LWORK >= max(1,MB)*NB.
  142. *> If LWORK = -1, then a workspace query is assumed; the routine
  143. *> only calculates the optimal size of the WORK array, returns
  144. *> this value as the first entry of the WORK array, and no error
  145. *> message related to LWORK is issued by XERBLA.
  146. *>
  147. *> \endverbatim
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \par Further Details:
  164. * =====================
  165. *>
  166. *> \verbatim
  167. *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
  168. *> representing Q as a product of other orthogonal matrices
  169. *> Q = Q(1) * Q(2) * . . . * Q(k)
  170. *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
  171. *> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
  172. *> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
  173. *> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
  174. *> . . .
  175. *>
  176. *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
  177. *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  178. *> block reflectors, stored in array T(1:LDT,1:N).
  179. *> For more information see Further Details in GEQRT.
  180. *>
  181. *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
  182. *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
  183. *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
  184. *> The last Q(k) may use fewer rows.
  185. *> For more information see Further Details in TPQRT.
  186. *>
  187. *> For more details of the overall algorithm, see the description of
  188. *> Sequential TSQR in Section 2.2 of [1].
  189. *>
  190. *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  191. *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  192. *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  193. *> \endverbatim
  194. *>
  195. * =====================================================================
  196. SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  197. $ LDT, C, LDC, WORK, LWORK, INFO )
  198. *
  199. * -- LAPACK computational routine (version 3.7.1) --
  200. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  201. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  202. * June 2017
  203. *
  204. * .. Scalar Arguments ..
  205. CHARACTER SIDE, TRANS
  206. INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  207. * ..
  208. * .. Array Arguments ..
  209. COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
  210. $ T( LDT, * )
  211. * ..
  212. *
  213. * =====================================================================
  214. *
  215. * ..
  216. * .. Local Scalars ..
  217. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  218. INTEGER I, II, KK, LW, CTR
  219. * ..
  220. * .. External Functions ..
  221. LOGICAL LSAME
  222. EXTERNAL LSAME
  223. * .. External Subroutines ..
  224. EXTERNAL ZGEMQRT, ZTPMQRT, XERBLA
  225. * ..
  226. * .. Executable Statements ..
  227. *
  228. * Test the input arguments
  229. *
  230. LQUERY = LWORK.LT.0
  231. NOTRAN = LSAME( TRANS, 'N' )
  232. TRAN = LSAME( TRANS, 'C' )
  233. LEFT = LSAME( SIDE, 'L' )
  234. RIGHT = LSAME( SIDE, 'R' )
  235. IF (LEFT) THEN
  236. LW = N * NB
  237. ELSE
  238. LW = M * NB
  239. END IF
  240. *
  241. INFO = 0
  242. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  243. INFO = -1
  244. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  245. INFO = -2
  246. ELSE IF( M.LT.0 ) THEN
  247. INFO = -3
  248. ELSE IF( N.LT.0 ) THEN
  249. INFO = -4
  250. ELSE IF( K.LT.0 ) THEN
  251. INFO = -5
  252. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  253. INFO = -9
  254. ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
  255. INFO = -11
  256. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  257. INFO = -13
  258. ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  259. INFO = -15
  260. END IF
  261. *
  262. * Determine the block size if it is tall skinny or short and wide
  263. *
  264. IF( INFO.EQ.0) THEN
  265. WORK(1) = LW
  266. END IF
  267. *
  268. IF( INFO.NE.0 ) THEN
  269. CALL XERBLA( 'ZLAMTSQR', -INFO )
  270. RETURN
  271. ELSE IF (LQUERY) THEN
  272. RETURN
  273. END IF
  274. *
  275. * Quick return if possible
  276. *
  277. IF( MIN(M,N,K).EQ.0 ) THEN
  278. RETURN
  279. END IF
  280. *
  281. IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
  282. CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
  283. $ T, LDT, C, LDC, WORK, INFO)
  284. RETURN
  285. END IF
  286. *
  287. IF(LEFT.AND.NOTRAN) THEN
  288. *
  289. * Multiply Q to the last block of C
  290. *
  291. KK = MOD((M-K),(MB-K))
  292. CTR = (M-K)/(MB-K)
  293. IF (KK.GT.0) THEN
  294. II=M-KK+1
  295. CALL ZTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
  296. $ T(1, CTR * K + 1),LDT , C(1,1), LDC,
  297. $ C(II,1), LDC, WORK, INFO )
  298. ELSE
  299. II=M+1
  300. END IF
  301. *
  302. DO I=II-(MB-K),MB+1,-(MB-K)
  303. *
  304. * Multiply Q to the current block of C (I:I+MB,1:N)
  305. *
  306. CTR = CTR - 1
  307. CALL ZTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
  308. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  309. $ C(I,1), LDC, WORK, INFO )
  310. END DO
  311. *
  312. * Multiply Q to the first block of C (1:MB,1:N)
  313. *
  314. CALL ZGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
  315. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  316. *
  317. ELSE IF (LEFT.AND.TRAN) THEN
  318. *
  319. * Multiply Q to the first block of C
  320. *
  321. KK = MOD((M-K),(MB-K))
  322. II=M-KK+1
  323. CTR = 1
  324. CALL ZGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
  325. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  326. *
  327. DO I=MB+1,II-MB+K,(MB-K)
  328. *
  329. * Multiply Q to the current block of C (I:I+MB,1:N)
  330. *
  331. CALL ZTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
  332. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  333. $ C(I,1), LDC, WORK, INFO )
  334. CTR = CTR + 1
  335. *
  336. END DO
  337. IF(II.LE.M) THEN
  338. *
  339. * Multiply Q to the last block of C
  340. *
  341. CALL ZTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
  342. $ T(1, CTR * K + 1), LDT, C(1,1), LDC,
  343. $ C(II,1), LDC, WORK, INFO )
  344. *
  345. END IF
  346. *
  347. ELSE IF(RIGHT.AND.TRAN) THEN
  348. *
  349. * Multiply Q to the last block of C
  350. *
  351. KK = MOD((N-K),(MB-K))
  352. CTR = (N-K)/(MB-K)
  353. IF (KK.GT.0) THEN
  354. II=N-KK+1
  355. CALL ZTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
  356. $ T(1,CTR * K + 1), LDT, C(1,1), LDC,
  357. $ C(1,II), LDC, WORK, INFO )
  358. ELSE
  359. II=N+1
  360. END IF
  361. *
  362. DO I=II-(MB-K),MB+1,-(MB-K)
  363. *
  364. * Multiply Q to the current block of C (1:M,I:I+MB)
  365. *
  366. CTR = CTR - 1
  367. CALL ZTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
  368. $ T(1, CTR * K + 1), LDT, C(1,1), LDC,
  369. $ C(1,I), LDC, WORK, INFO )
  370. END DO
  371. *
  372. * Multiply Q to the first block of C (1:M,1:MB)
  373. *
  374. CALL ZGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
  375. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  376. *
  377. ELSE IF (RIGHT.AND.NOTRAN) THEN
  378. *
  379. * Multiply Q to the first block of C
  380. *
  381. KK = MOD((N-K),(MB-K))
  382. II=N-KK+1
  383. CTR = 1
  384. CALL ZGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
  385. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  386. *
  387. DO I=MB+1,II-MB+K,(MB-K)
  388. *
  389. * Multiply Q to the current block of C (1:M,I:I+MB)
  390. *
  391. CALL ZTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
  392. $ T(1, CTR * K + 1),LDT, C(1,1), LDC,
  393. $ C(1,I), LDC, WORK, INFO )
  394. CTR = CTR + 1
  395. *
  396. END DO
  397. IF(II.LE.N) THEN
  398. *
  399. * Multiply Q to the last block of C
  400. *
  401. CALL ZTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
  402. $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
  403. $ C(1,II), LDC, WORK, INFO )
  404. *
  405. END IF
  406. *
  407. END IF
  408. *
  409. WORK(1) = LW
  410. RETURN
  411. *
  412. * End of ZLAMTSQR
  413. *
  414. END