You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. *> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm, calling Level 2 BLAS).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHETF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHETF2 computes the factorization of a complex Hermitian matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**H or A = L*D*L**H
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**H is the conjugate transpose of U, and D is
  45. *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> Hermitian matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX*16 array, dimension (LDA,N)
  71. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *>
  94. *> If UPLO = 'U':
  95. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  96. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  97. *>
  98. *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  99. *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100. *> is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107. *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108. *> is a 2-by-2 diagonal block.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -k, the k-th argument had an illegal value
  116. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  117. *> has been completed, but the block diagonal matrix D is
  118. *> exactly singular, and division by zero will occur if it
  119. *> is used to solve a system of equations.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \date November 2013
  131. *
  132. *> \ingroup complex16HEcomputational
  133. *
  134. *> \par Further Details:
  135. * =====================
  136. *>
  137. *> \verbatim
  138. *>
  139. *> If UPLO = 'U', then A = U*D*U**H, where
  140. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  144. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146. *>
  147. *> ( I v 0 ) k-s
  148. *> U(k) = ( 0 I 0 ) s
  149. *> ( 0 0 I ) n-k
  150. *> k-s s n-k
  151. *>
  152. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155. *>
  156. *> If UPLO = 'L', then A = L*D*L**H, where
  157. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  161. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163. *>
  164. *> ( I 0 0 ) k-1
  165. *> L(k) = ( 0 I 0 ) s
  166. *> ( 0 v I ) n-k-s+1
  167. *> k-1 s n-k-s+1
  168. *>
  169. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172. *> \endverbatim
  173. *
  174. *> \par Contributors:
  175. * ==================
  176. *>
  177. *> \verbatim
  178. *> 09-29-06 - patch from
  179. *> Bobby Cheng, MathWorks
  180. *>
  181. *> Replace l.210 and l.393
  182. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  183. *> by
  184. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  185. *>
  186. *> 01-01-96 - Based on modifications by
  187. *> J. Lewis, Boeing Computer Services Company
  188. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  189. *> \endverbatim
  190. *
  191. * =====================================================================
  192. SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  193. *
  194. * -- LAPACK computational routine (version 3.5.0) --
  195. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. * November 2013
  198. *
  199. * .. Scalar Arguments ..
  200. CHARACTER UPLO
  201. INTEGER INFO, LDA, N
  202. * ..
  203. * .. Array Arguments ..
  204. INTEGER IPIV( * )
  205. COMPLEX*16 A( LDA, * )
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. Parameters ..
  211. DOUBLE PRECISION ZERO, ONE
  212. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213. DOUBLE PRECISION EIGHT, SEVTEN
  214. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215. * ..
  216. * .. Local Scalars ..
  217. LOGICAL UPPER
  218. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  219. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  220. $ TT
  221. COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
  222. * ..
  223. * .. External Functions ..
  224. LOGICAL LSAME, DISNAN
  225. INTEGER IZAMAX
  226. DOUBLE PRECISION DLAPY2
  227. EXTERNAL LSAME, IZAMAX, DLAPY2, DISNAN
  228. * ..
  229. * .. External Subroutines ..
  230. EXTERNAL XERBLA, ZDSCAL, ZHER, ZSWAP
  231. * ..
  232. * .. Intrinsic Functions ..
  233. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  234. * ..
  235. * .. Statement Functions ..
  236. DOUBLE PRECISION CABS1
  237. * ..
  238. * .. Statement Function definitions ..
  239. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  240. * ..
  241. * .. Executable Statements ..
  242. *
  243. * Test the input parameters.
  244. *
  245. INFO = 0
  246. UPPER = LSAME( UPLO, 'U' )
  247. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  248. INFO = -1
  249. ELSE IF( N.LT.0 ) THEN
  250. INFO = -2
  251. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  252. INFO = -4
  253. END IF
  254. IF( INFO.NE.0 ) THEN
  255. CALL XERBLA( 'ZHETF2', -INFO )
  256. RETURN
  257. END IF
  258. *
  259. * Initialize ALPHA for use in choosing pivot block size.
  260. *
  261. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  262. *
  263. IF( UPPER ) THEN
  264. *
  265. * Factorize A as U*D*U**H using the upper triangle of A
  266. *
  267. * K is the main loop index, decreasing from N to 1 in steps of
  268. * 1 or 2
  269. *
  270. K = N
  271. 10 CONTINUE
  272. *
  273. * If K < 1, exit from loop
  274. *
  275. IF( K.LT.1 )
  276. $ GO TO 90
  277. KSTEP = 1
  278. *
  279. * Determine rows and columns to be interchanged and whether
  280. * a 1-by-1 or 2-by-2 pivot block will be used
  281. *
  282. ABSAKK = ABS( DBLE( A( K, K ) ) )
  283. *
  284. * IMAX is the row-index of the largest off-diagonal element in
  285. * column K, and COLMAX is its absolute value.
  286. * Determine both COLMAX and IMAX.
  287. *
  288. IF( K.GT.1 ) THEN
  289. IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  290. COLMAX = CABS1( A( IMAX, K ) )
  291. ELSE
  292. COLMAX = ZERO
  293. END IF
  294. *
  295. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  296. *
  297. * Column K is zero or underflow, or contains a NaN:
  298. * set INFO and continue
  299. *
  300. IF( INFO.EQ.0 )
  301. $ INFO = K
  302. KP = K
  303. A( K, K ) = DBLE( A( K, K ) )
  304. ELSE
  305. *
  306. * ============================================================
  307. *
  308. * Test for interchange
  309. *
  310. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  311. *
  312. * no interchange, use 1-by-1 pivot block
  313. *
  314. KP = K
  315. ELSE
  316. *
  317. * JMAX is the column-index of the largest off-diagonal
  318. * element in row IMAX, and ROWMAX is its absolute value.
  319. * Determine only ROWMAX.
  320. *
  321. JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  322. ROWMAX = CABS1( A( IMAX, JMAX ) )
  323. IF( IMAX.GT.1 ) THEN
  324. JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  325. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  326. END IF
  327. *
  328. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  329. *
  330. * no interchange, use 1-by-1 pivot block
  331. *
  332. KP = K
  333. *
  334. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  335. $ THEN
  336. *
  337. * interchange rows and columns K and IMAX, use 1-by-1
  338. * pivot block
  339. *
  340. KP = IMAX
  341. ELSE
  342. *
  343. * interchange rows and columns K-1 and IMAX, use 2-by-2
  344. * pivot block
  345. *
  346. KP = IMAX
  347. KSTEP = 2
  348. END IF
  349. *
  350. END IF
  351. *
  352. * ============================================================
  353. *
  354. KK = K - KSTEP + 1
  355. IF( KP.NE.KK ) THEN
  356. *
  357. * Interchange rows and columns KK and KP in the leading
  358. * submatrix A(1:k,1:k)
  359. *
  360. CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  361. DO 20 J = KP + 1, KK - 1
  362. T = DCONJG( A( J, KK ) )
  363. A( J, KK ) = DCONJG( A( KP, J ) )
  364. A( KP, J ) = T
  365. 20 CONTINUE
  366. A( KP, KK ) = DCONJG( A( KP, KK ) )
  367. R1 = DBLE( A( KK, KK ) )
  368. A( KK, KK ) = DBLE( A( KP, KP ) )
  369. A( KP, KP ) = R1
  370. IF( KSTEP.EQ.2 ) THEN
  371. A( K, K ) = DBLE( A( K, K ) )
  372. T = A( K-1, K )
  373. A( K-1, K ) = A( KP, K )
  374. A( KP, K ) = T
  375. END IF
  376. ELSE
  377. A( K, K ) = DBLE( A( K, K ) )
  378. IF( KSTEP.EQ.2 )
  379. $ A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  380. END IF
  381. *
  382. * Update the leading submatrix
  383. *
  384. IF( KSTEP.EQ.1 ) THEN
  385. *
  386. * 1-by-1 pivot block D(k): column k now holds
  387. *
  388. * W(k) = U(k)*D(k)
  389. *
  390. * where U(k) is the k-th column of U
  391. *
  392. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  393. *
  394. * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  395. *
  396. R1 = ONE / DBLE( A( K, K ) )
  397. CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  398. *
  399. * Store U(k) in column k
  400. *
  401. CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  402. ELSE
  403. *
  404. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  405. *
  406. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  407. *
  408. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  409. * of U
  410. *
  411. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  412. *
  413. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  414. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  415. *
  416. IF( K.GT.2 ) THEN
  417. *
  418. D = DLAPY2( DBLE( A( K-1, K ) ),
  419. $ DIMAG( A( K-1, K ) ) )
  420. D22 = DBLE( A( K-1, K-1 ) ) / D
  421. D11 = DBLE( A( K, K ) ) / D
  422. TT = ONE / ( D11*D22-ONE )
  423. D12 = A( K-1, K ) / D
  424. D = TT / D
  425. *
  426. DO 40 J = K - 2, 1, -1
  427. WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
  428. $ A( J, K ) )
  429. WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
  430. DO 30 I = J, 1, -1
  431. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  432. $ A( I, K-1 )*DCONJG( WKM1 )
  433. 30 CONTINUE
  434. A( J, K ) = WK
  435. A( J, K-1 ) = WKM1
  436. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  437. 40 CONTINUE
  438. *
  439. END IF
  440. *
  441. END IF
  442. END IF
  443. *
  444. * Store details of the interchanges in IPIV
  445. *
  446. IF( KSTEP.EQ.1 ) THEN
  447. IPIV( K ) = KP
  448. ELSE
  449. IPIV( K ) = -KP
  450. IPIV( K-1 ) = -KP
  451. END IF
  452. *
  453. * Decrease K and return to the start of the main loop
  454. *
  455. K = K - KSTEP
  456. GO TO 10
  457. *
  458. ELSE
  459. *
  460. * Factorize A as L*D*L**H using the lower triangle of A
  461. *
  462. * K is the main loop index, increasing from 1 to N in steps of
  463. * 1 or 2
  464. *
  465. K = 1
  466. 50 CONTINUE
  467. *
  468. * If K > N, exit from loop
  469. *
  470. IF( K.GT.N )
  471. $ GO TO 90
  472. KSTEP = 1
  473. *
  474. * Determine rows and columns to be interchanged and whether
  475. * a 1-by-1 or 2-by-2 pivot block will be used
  476. *
  477. ABSAKK = ABS( DBLE( A( K, K ) ) )
  478. *
  479. * IMAX is the row-index of the largest off-diagonal element in
  480. * column K, and COLMAX is its absolute value.
  481. * Determine both COLMAX and IMAX.
  482. *
  483. IF( K.LT.N ) THEN
  484. IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  485. COLMAX = CABS1( A( IMAX, K ) )
  486. ELSE
  487. COLMAX = ZERO
  488. END IF
  489. *
  490. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  491. *
  492. * Column K is zero or underflow, or contains a NaN:
  493. * set INFO and continue
  494. *
  495. IF( INFO.EQ.0 )
  496. $ INFO = K
  497. KP = K
  498. A( K, K ) = DBLE( A( K, K ) )
  499. ELSE
  500. *
  501. * ============================================================
  502. *
  503. * Test for interchange
  504. *
  505. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  506. *
  507. * no interchange, use 1-by-1 pivot block
  508. *
  509. KP = K
  510. ELSE
  511. *
  512. * JMAX is the column-index of the largest off-diagonal
  513. * element in row IMAX, and ROWMAX is its absolute value.
  514. * Determine only ROWMAX.
  515. *
  516. JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  517. ROWMAX = CABS1( A( IMAX, JMAX ) )
  518. IF( IMAX.LT.N ) THEN
  519. JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  520. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  521. END IF
  522. *
  523. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  524. *
  525. * no interchange, use 1-by-1 pivot block
  526. *
  527. KP = K
  528. *
  529. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  530. $ THEN
  531. *
  532. * interchange rows and columns K and IMAX, use 1-by-1
  533. * pivot block
  534. *
  535. KP = IMAX
  536. ELSE
  537. *
  538. * interchange rows and columns K+1 and IMAX, use 2-by-2
  539. * pivot block
  540. *
  541. KP = IMAX
  542. KSTEP = 2
  543. END IF
  544. *
  545. END IF
  546. *
  547. * ============================================================
  548. *
  549. KK = K + KSTEP - 1
  550. IF( KP.NE.KK ) THEN
  551. *
  552. * Interchange rows and columns KK and KP in the trailing
  553. * submatrix A(k:n,k:n)
  554. *
  555. IF( KP.LT.N )
  556. $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  557. DO 60 J = KK + 1, KP - 1
  558. T = DCONJG( A( J, KK ) )
  559. A( J, KK ) = DCONJG( A( KP, J ) )
  560. A( KP, J ) = T
  561. 60 CONTINUE
  562. A( KP, KK ) = DCONJG( A( KP, KK ) )
  563. R1 = DBLE( A( KK, KK ) )
  564. A( KK, KK ) = DBLE( A( KP, KP ) )
  565. A( KP, KP ) = R1
  566. IF( KSTEP.EQ.2 ) THEN
  567. A( K, K ) = DBLE( A( K, K ) )
  568. T = A( K+1, K )
  569. A( K+1, K ) = A( KP, K )
  570. A( KP, K ) = T
  571. END IF
  572. ELSE
  573. A( K, K ) = DBLE( A( K, K ) )
  574. IF( KSTEP.EQ.2 )
  575. $ A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  576. END IF
  577. *
  578. * Update the trailing submatrix
  579. *
  580. IF( KSTEP.EQ.1 ) THEN
  581. *
  582. * 1-by-1 pivot block D(k): column k now holds
  583. *
  584. * W(k) = L(k)*D(k)
  585. *
  586. * where L(k) is the k-th column of L
  587. *
  588. IF( K.LT.N ) THEN
  589. *
  590. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  591. *
  592. * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  593. *
  594. R1 = ONE / DBLE( A( K, K ) )
  595. CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
  596. $ A( K+1, K+1 ), LDA )
  597. *
  598. * Store L(k) in column K
  599. *
  600. CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  601. END IF
  602. ELSE
  603. *
  604. * 2-by-2 pivot block D(k)
  605. *
  606. IF( K.LT.N-1 ) THEN
  607. *
  608. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  609. *
  610. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  611. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  612. *
  613. * where L(k) and L(k+1) are the k-th and (k+1)-th
  614. * columns of L
  615. *
  616. D = DLAPY2( DBLE( A( K+1, K ) ),
  617. $ DIMAG( A( K+1, K ) ) )
  618. D11 = DBLE( A( K+1, K+1 ) ) / D
  619. D22 = DBLE( A( K, K ) ) / D
  620. TT = ONE / ( D11*D22-ONE )
  621. D21 = A( K+1, K ) / D
  622. D = TT / D
  623. *
  624. DO 80 J = K + 2, N
  625. WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
  626. WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
  627. $ A( J, K ) )
  628. DO 70 I = J, N
  629. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  630. $ A( I, K+1 )*DCONJG( WKP1 )
  631. 70 CONTINUE
  632. A( J, K ) = WK
  633. A( J, K+1 ) = WKP1
  634. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  635. 80 CONTINUE
  636. END IF
  637. END IF
  638. END IF
  639. *
  640. * Store details of the interchanges in IPIV
  641. *
  642. IF( KSTEP.EQ.1 ) THEN
  643. IPIV( K ) = KP
  644. ELSE
  645. IPIV( K ) = -KP
  646. IPIV( K+1 ) = -KP
  647. END IF
  648. *
  649. * Increase K and return to the start of the main loop
  650. *
  651. K = K + KSTEP
  652. GO TO 50
  653. *
  654. END IF
  655. *
  656. 90 CONTINUE
  657. RETURN
  658. *
  659. * End of ZHETF2
  660. *
  661. END