You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbgst.f 49 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. *> \brief \b ZHBGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHBGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  22. * LDX, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO, VECT
  26. * INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHBGST reduces a complex Hermitian-definite banded generalized
  41. *> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
  42. *> such that C has the same bandwidth as A.
  43. *>
  44. *> B must have been previously factorized as S**H*S by ZPBSTF, using a
  45. *> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
  46. *> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
  47. *> bandwidth of A.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] VECT
  54. *> \verbatim
  55. *> VECT is CHARACTER*1
  56. *> = 'N': do not form the transformation matrix X;
  57. *> = 'V': form X.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is CHARACTER*1
  63. *> = 'U': Upper triangle of A is stored;
  64. *> = 'L': Lower triangle of A is stored.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrices A and B. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] KA
  74. *> \verbatim
  75. *> KA is INTEGER
  76. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  77. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KB
  81. *> \verbatim
  82. *> KB is INTEGER
  83. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AB
  88. *> \verbatim
  89. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  90. *> On entry, the upper or lower triangle of the Hermitian band
  91. *> matrix A, stored in the first ka+1 rows of the array. The
  92. *> j-th column of A is stored in the j-th column of the array AB
  93. *> as follows:
  94. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  95. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  96. *>
  97. *> On exit, the transformed matrix X**H*A*X, stored in the same
  98. *> format as A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDAB
  102. *> \verbatim
  103. *> LDAB is INTEGER
  104. *> The leading dimension of the array AB. LDAB >= KA+1.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] BB
  108. *> \verbatim
  109. *> BB is COMPLEX*16 array, dimension (LDBB,N)
  110. *> The banded factor S from the split Cholesky factorization of
  111. *> B, as returned by ZPBSTF, stored in the first kb+1 rows of
  112. *> the array.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDBB
  116. *> \verbatim
  117. *> LDBB is INTEGER
  118. *> The leading dimension of the array BB. LDBB >= KB+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] X
  122. *> \verbatim
  123. *> X is COMPLEX*16 array, dimension (LDX,N)
  124. *> If VECT = 'V', the n-by-n matrix X.
  125. *> If VECT = 'N', the array X is not referenced.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDX
  129. *> \verbatim
  130. *> LDX is INTEGER
  131. *> The leading dimension of the array X.
  132. *> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
  133. *> \endverbatim
  134. *>
  135. *> \param[out] WORK
  136. *> \verbatim
  137. *> WORK is COMPLEX*16 array, dimension (N)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] RWORK
  141. *> \verbatim
  142. *> RWORK is DOUBLE PRECISION array, dimension (N)
  143. *> \endverbatim
  144. *>
  145. *> \param[out] INFO
  146. *> \verbatim
  147. *> INFO is INTEGER
  148. *> = 0: successful exit
  149. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \date December 2016
  161. *
  162. *> \ingroup complex16OTHERcomputational
  163. *
  164. * =====================================================================
  165. SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  166. $ LDX, WORK, RWORK, INFO )
  167. *
  168. * -- LAPACK computational routine (version 3.7.0) --
  169. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  170. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171. * December 2016
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER UPLO, VECT
  175. INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  176. * ..
  177. * .. Array Arguments ..
  178. DOUBLE PRECISION RWORK( * )
  179. COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  180. $ X( LDX, * )
  181. * ..
  182. *
  183. * =====================================================================
  184. *
  185. * .. Parameters ..
  186. COMPLEX*16 CZERO, CONE
  187. DOUBLE PRECISION ONE
  188. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  189. $ CONE = ( 1.0D+0, 0.0D+0 ), ONE = 1.0D+0 )
  190. * ..
  191. * .. Local Scalars ..
  192. LOGICAL UPDATE, UPPER, WANTX
  193. INTEGER I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
  194. $ KA1, KB1, KBT, L, M, NR, NRT, NX
  195. DOUBLE PRECISION BII
  196. COMPLEX*16 RA, RA1, T
  197. * ..
  198. * .. External Functions ..
  199. LOGICAL LSAME
  200. EXTERNAL LSAME
  201. * ..
  202. * .. External Subroutines ..
  203. EXTERNAL XERBLA, ZDSCAL, ZGERC, ZGERU, ZLACGV, ZLAR2V,
  204. $ ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT
  205. * ..
  206. * .. Intrinsic Functions ..
  207. INTRINSIC DBLE, DCONJG, MAX, MIN
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. * Test the input parameters
  212. *
  213. WANTX = LSAME( VECT, 'V' )
  214. UPPER = LSAME( UPLO, 'U' )
  215. KA1 = KA + 1
  216. KB1 = KB + 1
  217. INFO = 0
  218. IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
  219. INFO = -1
  220. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  221. INFO = -2
  222. ELSE IF( N.LT.0 ) THEN
  223. INFO = -3
  224. ELSE IF( KA.LT.0 ) THEN
  225. INFO = -4
  226. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  227. INFO = -5
  228. ELSE IF( LDAB.LT.KA+1 ) THEN
  229. INFO = -7
  230. ELSE IF( LDBB.LT.KB+1 ) THEN
  231. INFO = -9
  232. ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
  233. INFO = -11
  234. END IF
  235. IF( INFO.NE.0 ) THEN
  236. CALL XERBLA( 'ZHBGST', -INFO )
  237. RETURN
  238. END IF
  239. *
  240. * Quick return if possible
  241. *
  242. IF( N.EQ.0 )
  243. $ RETURN
  244. *
  245. INCA = LDAB*KA1
  246. *
  247. * Initialize X to the unit matrix, if needed
  248. *
  249. IF( WANTX )
  250. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, X, LDX )
  251. *
  252. * Set M to the splitting point m. It must be the same value as is
  253. * used in ZPBSTF. The chosen value allows the arrays WORK and RWORK
  254. * to be of dimension (N).
  255. *
  256. M = ( N+KB ) / 2
  257. *
  258. * The routine works in two phases, corresponding to the two halves
  259. * of the split Cholesky factorization of B as S**H*S where
  260. *
  261. * S = ( U )
  262. * ( M L )
  263. *
  264. * with U upper triangular of order m, and L lower triangular of
  265. * order n-m. S has the same bandwidth as B.
  266. *
  267. * S is treated as a product of elementary matrices:
  268. *
  269. * S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
  270. *
  271. * where S(i) is determined by the i-th row of S.
  272. *
  273. * In phase 1, the index i takes the values n, n-1, ... , m+1;
  274. * in phase 2, it takes the values 1, 2, ... , m.
  275. *
  276. * For each value of i, the current matrix A is updated by forming
  277. * inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
  278. * the band of A. The bulge is then pushed down toward the bottom of
  279. * A in phase 1, and up toward the top of A in phase 2, by applying
  280. * plane rotations.
  281. *
  282. * There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
  283. * of them are linearly independent, so annihilating a bulge requires
  284. * only 2*kb-1 plane rotations. The rotations are divided into a 1st
  285. * set of kb-1 rotations, and a 2nd set of kb rotations.
  286. *
  287. * Wherever possible, rotations are generated and applied in vector
  288. * operations of length NR between the indices J1 and J2 (sometimes
  289. * replaced by modified values NRT, J1T or J2T).
  290. *
  291. * The real cosines and complex sines of the rotations are stored in
  292. * the arrays RWORK and WORK, those of the 1st set in elements
  293. * 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
  294. *
  295. * The bulges are not formed explicitly; nonzero elements outside the
  296. * band are created only when they are required for generating new
  297. * rotations; they are stored in the array WORK, in positions where
  298. * they are later overwritten by the sines of the rotations which
  299. * annihilate them.
  300. *
  301. * **************************** Phase 1 *****************************
  302. *
  303. * The logical structure of this phase is:
  304. *
  305. * UPDATE = .TRUE.
  306. * DO I = N, M + 1, -1
  307. * use S(i) to update A and create a new bulge
  308. * apply rotations to push all bulges KA positions downward
  309. * END DO
  310. * UPDATE = .FALSE.
  311. * DO I = M + KA + 1, N - 1
  312. * apply rotations to push all bulges KA positions downward
  313. * END DO
  314. *
  315. * To avoid duplicating code, the two loops are merged.
  316. *
  317. UPDATE = .TRUE.
  318. I = N + 1
  319. 10 CONTINUE
  320. IF( UPDATE ) THEN
  321. I = I - 1
  322. KBT = MIN( KB, I-1 )
  323. I0 = I - 1
  324. I1 = MIN( N, I+KA )
  325. I2 = I - KBT + KA1
  326. IF( I.LT.M+1 ) THEN
  327. UPDATE = .FALSE.
  328. I = I + 1
  329. I0 = M
  330. IF( KA.EQ.0 )
  331. $ GO TO 480
  332. GO TO 10
  333. END IF
  334. ELSE
  335. I = I + KA
  336. IF( I.GT.N-1 )
  337. $ GO TO 480
  338. END IF
  339. *
  340. IF( UPPER ) THEN
  341. *
  342. * Transform A, working with the upper triangle
  343. *
  344. IF( UPDATE ) THEN
  345. *
  346. * Form inv(S(i))**H * A * inv(S(i))
  347. *
  348. BII = DBLE( BB( KB1, I ) )
  349. AB( KA1, I ) = ( DBLE( AB( KA1, I ) ) / BII ) / BII
  350. DO 20 J = I + 1, I1
  351. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  352. 20 CONTINUE
  353. DO 30 J = MAX( 1, I-KA ), I - 1
  354. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  355. 30 CONTINUE
  356. DO 60 K = I - KBT, I - 1
  357. DO 40 J = I - KBT, K
  358. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  359. $ BB( J-I+KB1, I )*
  360. $ DCONJG( AB( K-I+KA1, I ) ) -
  361. $ DCONJG( BB( K-I+KB1, I ) )*
  362. $ AB( J-I+KA1, I ) +
  363. $ DBLE( AB( KA1, I ) )*
  364. $ BB( J-I+KB1, I )*
  365. $ DCONJG( BB( K-I+KB1, I ) )
  366. 40 CONTINUE
  367. DO 50 J = MAX( 1, I-KA ), I - KBT - 1
  368. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  369. $ DCONJG( BB( K-I+KB1, I ) )*
  370. $ AB( J-I+KA1, I )
  371. 50 CONTINUE
  372. 60 CONTINUE
  373. DO 80 J = I, I1
  374. DO 70 K = MAX( J-KA, I-KBT ), I - 1
  375. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  376. $ BB( K-I+KB1, I )*AB( I-J+KA1, J )
  377. 70 CONTINUE
  378. 80 CONTINUE
  379. *
  380. IF( WANTX ) THEN
  381. *
  382. * post-multiply X by inv(S(i))
  383. *
  384. CALL ZDSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  385. IF( KBT.GT.0 )
  386. $ CALL ZGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
  387. $ BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
  388. $ LDX )
  389. END IF
  390. *
  391. * store a(i,i1) in RA1 for use in next loop over K
  392. *
  393. RA1 = AB( I-I1+KA1, I1 )
  394. END IF
  395. *
  396. * Generate and apply vectors of rotations to chase all the
  397. * existing bulges KA positions down toward the bottom of the
  398. * band
  399. *
  400. DO 130 K = 1, KB - 1
  401. IF( UPDATE ) THEN
  402. *
  403. * Determine the rotations which would annihilate the bulge
  404. * which has in theory just been created
  405. *
  406. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  407. *
  408. * generate rotation to annihilate a(i,i-k+ka+1)
  409. *
  410. CALL ZLARTG( AB( K+1, I-K+KA ), RA1,
  411. $ RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
  412. *
  413. * create nonzero element a(i-k,i-k+ka+1) outside the
  414. * band and store it in WORK(i-k)
  415. *
  416. T = -BB( KB1-K, I )*RA1
  417. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  418. $ DCONJG( WORK( I-K+KA-M ) )*
  419. $ AB( 1, I-K+KA )
  420. AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
  421. $ RWORK( I-K+KA-M )*AB( 1, I-K+KA )
  422. RA1 = RA
  423. END IF
  424. END IF
  425. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  426. NR = ( N-J2+KA ) / KA1
  427. J1 = J2 + ( NR-1 )*KA1
  428. IF( UPDATE ) THEN
  429. J2T = MAX( J2, I+2*KA-K+1 )
  430. ELSE
  431. J2T = J2
  432. END IF
  433. NRT = ( N-J2T+KA ) / KA1
  434. DO 90 J = J2T, J1, KA1
  435. *
  436. * create nonzero element a(j-ka,j+1) outside the band
  437. * and store it in WORK(j-m)
  438. *
  439. WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
  440. AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
  441. 90 CONTINUE
  442. *
  443. * generate rotations in 1st set to annihilate elements which
  444. * have been created outside the band
  445. *
  446. IF( NRT.GT.0 )
  447. $ CALL ZLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
  448. $ RWORK( J2T-M ), KA1 )
  449. IF( NR.GT.0 ) THEN
  450. *
  451. * apply rotations in 1st set from the right
  452. *
  453. DO 100 L = 1, KA - 1
  454. CALL ZLARTV( NR, AB( KA1-L, J2 ), INCA,
  455. $ AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
  456. $ WORK( J2-M ), KA1 )
  457. 100 CONTINUE
  458. *
  459. * apply rotations in 1st set from both sides to diagonal
  460. * blocks
  461. *
  462. CALL ZLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  463. $ AB( KA, J2+1 ), INCA, RWORK( J2-M ),
  464. $ WORK( J2-M ), KA1 )
  465. *
  466. CALL ZLACGV( NR, WORK( J2-M ), KA1 )
  467. END IF
  468. *
  469. * start applying rotations in 1st set from the left
  470. *
  471. DO 110 L = KA - 1, KB - K + 1, -1
  472. NRT = ( N-J2+L ) / KA1
  473. IF( NRT.GT.0 )
  474. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  475. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  476. $ WORK( J2-M ), KA1 )
  477. 110 CONTINUE
  478. *
  479. IF( WANTX ) THEN
  480. *
  481. * post-multiply X by product of rotations in 1st set
  482. *
  483. DO 120 J = J2, J1, KA1
  484. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  485. $ RWORK( J-M ), DCONJG( WORK( J-M ) ) )
  486. 120 CONTINUE
  487. END IF
  488. 130 CONTINUE
  489. *
  490. IF( UPDATE ) THEN
  491. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  492. *
  493. * create nonzero element a(i-kbt,i-kbt+ka+1) outside the
  494. * band and store it in WORK(i-kbt)
  495. *
  496. WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
  497. END IF
  498. END IF
  499. *
  500. DO 170 K = KB, 1, -1
  501. IF( UPDATE ) THEN
  502. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  503. ELSE
  504. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  505. END IF
  506. *
  507. * finish applying rotations in 2nd set from the left
  508. *
  509. DO 140 L = KB - K, 1, -1
  510. NRT = ( N-J2+KA+L ) / KA1
  511. IF( NRT.GT.0 )
  512. $ CALL ZLARTV( NRT, AB( L, J2-L+1 ), INCA,
  513. $ AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
  514. $ WORK( J2-KA ), KA1 )
  515. 140 CONTINUE
  516. NR = ( N-J2+KA ) / KA1
  517. J1 = J2 + ( NR-1 )*KA1
  518. DO 150 J = J1, J2, -KA1
  519. WORK( J ) = WORK( J-KA )
  520. RWORK( J ) = RWORK( J-KA )
  521. 150 CONTINUE
  522. DO 160 J = J2, J1, KA1
  523. *
  524. * create nonzero element a(j-ka,j+1) outside the band
  525. * and store it in WORK(j)
  526. *
  527. WORK( J ) = WORK( J )*AB( 1, J+1 )
  528. AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
  529. 160 CONTINUE
  530. IF( UPDATE ) THEN
  531. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  532. $ WORK( I-K+KA ) = WORK( I-K )
  533. END IF
  534. 170 CONTINUE
  535. *
  536. DO 210 K = KB, 1, -1
  537. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  538. NR = ( N-J2+KA ) / KA1
  539. J1 = J2 + ( NR-1 )*KA1
  540. IF( NR.GT.0 ) THEN
  541. *
  542. * generate rotations in 2nd set to annihilate elements
  543. * which have been created outside the band
  544. *
  545. CALL ZLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
  546. $ RWORK( J2 ), KA1 )
  547. *
  548. * apply rotations in 2nd set from the right
  549. *
  550. DO 180 L = 1, KA - 1
  551. CALL ZLARTV( NR, AB( KA1-L, J2 ), INCA,
  552. $ AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
  553. $ WORK( J2 ), KA1 )
  554. 180 CONTINUE
  555. *
  556. * apply rotations in 2nd set from both sides to diagonal
  557. * blocks
  558. *
  559. CALL ZLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  560. $ AB( KA, J2+1 ), INCA, RWORK( J2 ),
  561. $ WORK( J2 ), KA1 )
  562. *
  563. CALL ZLACGV( NR, WORK( J2 ), KA1 )
  564. END IF
  565. *
  566. * start applying rotations in 2nd set from the left
  567. *
  568. DO 190 L = KA - 1, KB - K + 1, -1
  569. NRT = ( N-J2+L ) / KA1
  570. IF( NRT.GT.0 )
  571. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  572. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
  573. $ WORK( J2 ), KA1 )
  574. 190 CONTINUE
  575. *
  576. IF( WANTX ) THEN
  577. *
  578. * post-multiply X by product of rotations in 2nd set
  579. *
  580. DO 200 J = J2, J1, KA1
  581. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  582. $ RWORK( J ), DCONJG( WORK( J ) ) )
  583. 200 CONTINUE
  584. END IF
  585. 210 CONTINUE
  586. *
  587. DO 230 K = 1, KB - 1
  588. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  589. *
  590. * finish applying rotations in 1st set from the left
  591. *
  592. DO 220 L = KB - K, 1, -1
  593. NRT = ( N-J2+L ) / KA1
  594. IF( NRT.GT.0 )
  595. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  596. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  597. $ WORK( J2-M ), KA1 )
  598. 220 CONTINUE
  599. 230 CONTINUE
  600. *
  601. IF( KB.GT.1 ) THEN
  602. DO 240 J = N - 1, J2 + KA, -1
  603. RWORK( J-M ) = RWORK( J-KA-M )
  604. WORK( J-M ) = WORK( J-KA-M )
  605. 240 CONTINUE
  606. END IF
  607. *
  608. ELSE
  609. *
  610. * Transform A, working with the lower triangle
  611. *
  612. IF( UPDATE ) THEN
  613. *
  614. * Form inv(S(i))**H * A * inv(S(i))
  615. *
  616. BII = DBLE( BB( 1, I ) )
  617. AB( 1, I ) = ( DBLE( AB( 1, I ) ) / BII ) / BII
  618. DO 250 J = I + 1, I1
  619. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  620. 250 CONTINUE
  621. DO 260 J = MAX( 1, I-KA ), I - 1
  622. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  623. 260 CONTINUE
  624. DO 290 K = I - KBT, I - 1
  625. DO 270 J = I - KBT, K
  626. AB( K-J+1, J ) = AB( K-J+1, J ) -
  627. $ BB( I-J+1, J )*DCONJG( AB( I-K+1,
  628. $ K ) ) - DCONJG( BB( I-K+1, K ) )*
  629. $ AB( I-J+1, J ) + DBLE( AB( 1, I ) )*
  630. $ BB( I-J+1, J )*DCONJG( BB( I-K+1,
  631. $ K ) )
  632. 270 CONTINUE
  633. DO 280 J = MAX( 1, I-KA ), I - KBT - 1
  634. AB( K-J+1, J ) = AB( K-J+1, J ) -
  635. $ DCONJG( BB( I-K+1, K ) )*
  636. $ AB( I-J+1, J )
  637. 280 CONTINUE
  638. 290 CONTINUE
  639. DO 310 J = I, I1
  640. DO 300 K = MAX( J-KA, I-KBT ), I - 1
  641. AB( J-K+1, K ) = AB( J-K+1, K ) -
  642. $ BB( I-K+1, K )*AB( J-I+1, I )
  643. 300 CONTINUE
  644. 310 CONTINUE
  645. *
  646. IF( WANTX ) THEN
  647. *
  648. * post-multiply X by inv(S(i))
  649. *
  650. CALL ZDSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  651. IF( KBT.GT.0 )
  652. $ CALL ZGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
  653. $ BB( KBT+1, I-KBT ), LDBB-1,
  654. $ X( M+1, I-KBT ), LDX )
  655. END IF
  656. *
  657. * store a(i1,i) in RA1 for use in next loop over K
  658. *
  659. RA1 = AB( I1-I+1, I )
  660. END IF
  661. *
  662. * Generate and apply vectors of rotations to chase all the
  663. * existing bulges KA positions down toward the bottom of the
  664. * band
  665. *
  666. DO 360 K = 1, KB - 1
  667. IF( UPDATE ) THEN
  668. *
  669. * Determine the rotations which would annihilate the bulge
  670. * which has in theory just been created
  671. *
  672. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  673. *
  674. * generate rotation to annihilate a(i-k+ka+1,i)
  675. *
  676. CALL ZLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
  677. $ WORK( I-K+KA-M ), RA )
  678. *
  679. * create nonzero element a(i-k+ka+1,i-k) outside the
  680. * band and store it in WORK(i-k)
  681. *
  682. T = -BB( K+1, I-K )*RA1
  683. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  684. $ DCONJG( WORK( I-K+KA-M ) )*
  685. $ AB( KA1, I-K )
  686. AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
  687. $ RWORK( I-K+KA-M )*AB( KA1, I-K )
  688. RA1 = RA
  689. END IF
  690. END IF
  691. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  692. NR = ( N-J2+KA ) / KA1
  693. J1 = J2 + ( NR-1 )*KA1
  694. IF( UPDATE ) THEN
  695. J2T = MAX( J2, I+2*KA-K+1 )
  696. ELSE
  697. J2T = J2
  698. END IF
  699. NRT = ( N-J2T+KA ) / KA1
  700. DO 320 J = J2T, J1, KA1
  701. *
  702. * create nonzero element a(j+1,j-ka) outside the band
  703. * and store it in WORK(j-m)
  704. *
  705. WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
  706. AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
  707. 320 CONTINUE
  708. *
  709. * generate rotations in 1st set to annihilate elements which
  710. * have been created outside the band
  711. *
  712. IF( NRT.GT.0 )
  713. $ CALL ZLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
  714. $ KA1, RWORK( J2T-M ), KA1 )
  715. IF( NR.GT.0 ) THEN
  716. *
  717. * apply rotations in 1st set from the left
  718. *
  719. DO 330 L = 1, KA - 1
  720. CALL ZLARTV( NR, AB( L+1, J2-L ), INCA,
  721. $ AB( L+2, J2-L ), INCA, RWORK( J2-M ),
  722. $ WORK( J2-M ), KA1 )
  723. 330 CONTINUE
  724. *
  725. * apply rotations in 1st set from both sides to diagonal
  726. * blocks
  727. *
  728. CALL ZLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  729. $ INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
  730. *
  731. CALL ZLACGV( NR, WORK( J2-M ), KA1 )
  732. END IF
  733. *
  734. * start applying rotations in 1st set from the right
  735. *
  736. DO 340 L = KA - 1, KB - K + 1, -1
  737. NRT = ( N-J2+L ) / KA1
  738. IF( NRT.GT.0 )
  739. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  740. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  741. $ WORK( J2-M ), KA1 )
  742. 340 CONTINUE
  743. *
  744. IF( WANTX ) THEN
  745. *
  746. * post-multiply X by product of rotations in 1st set
  747. *
  748. DO 350 J = J2, J1, KA1
  749. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  750. $ RWORK( J-M ), WORK( J-M ) )
  751. 350 CONTINUE
  752. END IF
  753. 360 CONTINUE
  754. *
  755. IF( UPDATE ) THEN
  756. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  757. *
  758. * create nonzero element a(i-kbt+ka+1,i-kbt) outside the
  759. * band and store it in WORK(i-kbt)
  760. *
  761. WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
  762. END IF
  763. END IF
  764. *
  765. DO 400 K = KB, 1, -1
  766. IF( UPDATE ) THEN
  767. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  768. ELSE
  769. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  770. END IF
  771. *
  772. * finish applying rotations in 2nd set from the right
  773. *
  774. DO 370 L = KB - K, 1, -1
  775. NRT = ( N-J2+KA+L ) / KA1
  776. IF( NRT.GT.0 )
  777. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
  778. $ AB( KA1-L, J2-KA+1 ), INCA,
  779. $ RWORK( J2-KA ), WORK( J2-KA ), KA1 )
  780. 370 CONTINUE
  781. NR = ( N-J2+KA ) / KA1
  782. J1 = J2 + ( NR-1 )*KA1
  783. DO 380 J = J1, J2, -KA1
  784. WORK( J ) = WORK( J-KA )
  785. RWORK( J ) = RWORK( J-KA )
  786. 380 CONTINUE
  787. DO 390 J = J2, J1, KA1
  788. *
  789. * create nonzero element a(j+1,j-ka) outside the band
  790. * and store it in WORK(j)
  791. *
  792. WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
  793. AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
  794. 390 CONTINUE
  795. IF( UPDATE ) THEN
  796. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  797. $ WORK( I-K+KA ) = WORK( I-K )
  798. END IF
  799. 400 CONTINUE
  800. *
  801. DO 440 K = KB, 1, -1
  802. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  803. NR = ( N-J2+KA ) / KA1
  804. J1 = J2 + ( NR-1 )*KA1
  805. IF( NR.GT.0 ) THEN
  806. *
  807. * generate rotations in 2nd set to annihilate elements
  808. * which have been created outside the band
  809. *
  810. CALL ZLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
  811. $ RWORK( J2 ), KA1 )
  812. *
  813. * apply rotations in 2nd set from the left
  814. *
  815. DO 410 L = 1, KA - 1
  816. CALL ZLARTV( NR, AB( L+1, J2-L ), INCA,
  817. $ AB( L+2, J2-L ), INCA, RWORK( J2 ),
  818. $ WORK( J2 ), KA1 )
  819. 410 CONTINUE
  820. *
  821. * apply rotations in 2nd set from both sides to diagonal
  822. * blocks
  823. *
  824. CALL ZLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  825. $ INCA, RWORK( J2 ), WORK( J2 ), KA1 )
  826. *
  827. CALL ZLACGV( NR, WORK( J2 ), KA1 )
  828. END IF
  829. *
  830. * start applying rotations in 2nd set from the right
  831. *
  832. DO 420 L = KA - 1, KB - K + 1, -1
  833. NRT = ( N-J2+L ) / KA1
  834. IF( NRT.GT.0 )
  835. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  836. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
  837. $ WORK( J2 ), KA1 )
  838. 420 CONTINUE
  839. *
  840. IF( WANTX ) THEN
  841. *
  842. * post-multiply X by product of rotations in 2nd set
  843. *
  844. DO 430 J = J2, J1, KA1
  845. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  846. $ RWORK( J ), WORK( J ) )
  847. 430 CONTINUE
  848. END IF
  849. 440 CONTINUE
  850. *
  851. DO 460 K = 1, KB - 1
  852. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  853. *
  854. * finish applying rotations in 1st set from the right
  855. *
  856. DO 450 L = KB - K, 1, -1
  857. NRT = ( N-J2+L ) / KA1
  858. IF( NRT.GT.0 )
  859. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  860. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  861. $ WORK( J2-M ), KA1 )
  862. 450 CONTINUE
  863. 460 CONTINUE
  864. *
  865. IF( KB.GT.1 ) THEN
  866. DO 470 J = N - 1, J2 + KA, -1
  867. RWORK( J-M ) = RWORK( J-KA-M )
  868. WORK( J-M ) = WORK( J-KA-M )
  869. 470 CONTINUE
  870. END IF
  871. *
  872. END IF
  873. *
  874. GO TO 10
  875. *
  876. 480 CONTINUE
  877. *
  878. * **************************** Phase 2 *****************************
  879. *
  880. * The logical structure of this phase is:
  881. *
  882. * UPDATE = .TRUE.
  883. * DO I = 1, M
  884. * use S(i) to update A and create a new bulge
  885. * apply rotations to push all bulges KA positions upward
  886. * END DO
  887. * UPDATE = .FALSE.
  888. * DO I = M - KA - 1, 2, -1
  889. * apply rotations to push all bulges KA positions upward
  890. * END DO
  891. *
  892. * To avoid duplicating code, the two loops are merged.
  893. *
  894. UPDATE = .TRUE.
  895. I = 0
  896. 490 CONTINUE
  897. IF( UPDATE ) THEN
  898. I = I + 1
  899. KBT = MIN( KB, M-I )
  900. I0 = I + 1
  901. I1 = MAX( 1, I-KA )
  902. I2 = I + KBT - KA1
  903. IF( I.GT.M ) THEN
  904. UPDATE = .FALSE.
  905. I = I - 1
  906. I0 = M + 1
  907. IF( KA.EQ.0 )
  908. $ RETURN
  909. GO TO 490
  910. END IF
  911. ELSE
  912. I = I - KA
  913. IF( I.LT.2 )
  914. $ RETURN
  915. END IF
  916. *
  917. IF( I.LT.M-KBT ) THEN
  918. NX = M
  919. ELSE
  920. NX = N
  921. END IF
  922. *
  923. IF( UPPER ) THEN
  924. *
  925. * Transform A, working with the upper triangle
  926. *
  927. IF( UPDATE ) THEN
  928. *
  929. * Form inv(S(i))**H * A * inv(S(i))
  930. *
  931. BII = DBLE( BB( KB1, I ) )
  932. AB( KA1, I ) = ( DBLE( AB( KA1, I ) ) / BII ) / BII
  933. DO 500 J = I1, I - 1
  934. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  935. 500 CONTINUE
  936. DO 510 J = I + 1, MIN( N, I+KA )
  937. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  938. 510 CONTINUE
  939. DO 540 K = I + 1, I + KBT
  940. DO 520 J = K, I + KBT
  941. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  942. $ BB( I-J+KB1, J )*
  943. $ DCONJG( AB( I-K+KA1, K ) ) -
  944. $ DCONJG( BB( I-K+KB1, K ) )*
  945. $ AB( I-J+KA1, J ) +
  946. $ DBLE( AB( KA1, I ) )*
  947. $ BB( I-J+KB1, J )*
  948. $ DCONJG( BB( I-K+KB1, K ) )
  949. 520 CONTINUE
  950. DO 530 J = I + KBT + 1, MIN( N, I+KA )
  951. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  952. $ DCONJG( BB( I-K+KB1, K ) )*
  953. $ AB( I-J+KA1, J )
  954. 530 CONTINUE
  955. 540 CONTINUE
  956. DO 560 J = I1, I
  957. DO 550 K = I + 1, MIN( J+KA, I+KBT )
  958. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  959. $ BB( I-K+KB1, K )*AB( J-I+KA1, I )
  960. 550 CONTINUE
  961. 560 CONTINUE
  962. *
  963. IF( WANTX ) THEN
  964. *
  965. * post-multiply X by inv(S(i))
  966. *
  967. CALL ZDSCAL( NX, ONE / BII, X( 1, I ), 1 )
  968. IF( KBT.GT.0 )
  969. $ CALL ZGERU( NX, KBT, -CONE, X( 1, I ), 1,
  970. $ BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
  971. END IF
  972. *
  973. * store a(i1,i) in RA1 for use in next loop over K
  974. *
  975. RA1 = AB( I1-I+KA1, I )
  976. END IF
  977. *
  978. * Generate and apply vectors of rotations to chase all the
  979. * existing bulges KA positions up toward the top of the band
  980. *
  981. DO 610 K = 1, KB - 1
  982. IF( UPDATE ) THEN
  983. *
  984. * Determine the rotations which would annihilate the bulge
  985. * which has in theory just been created
  986. *
  987. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  988. *
  989. * generate rotation to annihilate a(i+k-ka-1,i)
  990. *
  991. CALL ZLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
  992. $ WORK( I+K-KA ), RA )
  993. *
  994. * create nonzero element a(i+k-ka-1,i+k) outside the
  995. * band and store it in WORK(m-kb+i+k)
  996. *
  997. T = -BB( KB1-K, I+K )*RA1
  998. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  999. $ DCONJG( WORK( I+K-KA ) )*
  1000. $ AB( 1, I+K )
  1001. AB( 1, I+K ) = WORK( I+K-KA )*T +
  1002. $ RWORK( I+K-KA )*AB( 1, I+K )
  1003. RA1 = RA
  1004. END IF
  1005. END IF
  1006. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1007. NR = ( J2+KA-1 ) / KA1
  1008. J1 = J2 - ( NR-1 )*KA1
  1009. IF( UPDATE ) THEN
  1010. J2T = MIN( J2, I-2*KA+K-1 )
  1011. ELSE
  1012. J2T = J2
  1013. END IF
  1014. NRT = ( J2T+KA-1 ) / KA1
  1015. DO 570 J = J1, J2T, KA1
  1016. *
  1017. * create nonzero element a(j-1,j+ka) outside the band
  1018. * and store it in WORK(j)
  1019. *
  1020. WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
  1021. AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
  1022. 570 CONTINUE
  1023. *
  1024. * generate rotations in 1st set to annihilate elements which
  1025. * have been created outside the band
  1026. *
  1027. IF( NRT.GT.0 )
  1028. $ CALL ZLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
  1029. $ RWORK( J1 ), KA1 )
  1030. IF( NR.GT.0 ) THEN
  1031. *
  1032. * apply rotations in 1st set from the left
  1033. *
  1034. DO 580 L = 1, KA - 1
  1035. CALL ZLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1036. $ AB( KA-L, J1+L ), INCA, RWORK( J1 ),
  1037. $ WORK( J1 ), KA1 )
  1038. 580 CONTINUE
  1039. *
  1040. * apply rotations in 1st set from both sides to diagonal
  1041. * blocks
  1042. *
  1043. CALL ZLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1044. $ AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
  1045. $ KA1 )
  1046. *
  1047. CALL ZLACGV( NR, WORK( J1 ), KA1 )
  1048. END IF
  1049. *
  1050. * start applying rotations in 1st set from the right
  1051. *
  1052. DO 590 L = KA - 1, KB - K + 1, -1
  1053. NRT = ( J2+L-1 ) / KA1
  1054. J1T = J2 - ( NRT-1 )*KA1
  1055. IF( NRT.GT.0 )
  1056. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1057. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1058. $ WORK( J1T ), KA1 )
  1059. 590 CONTINUE
  1060. *
  1061. IF( WANTX ) THEN
  1062. *
  1063. * post-multiply X by product of rotations in 1st set
  1064. *
  1065. DO 600 J = J1, J2, KA1
  1066. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1067. $ RWORK( J ), WORK( J ) )
  1068. 600 CONTINUE
  1069. END IF
  1070. 610 CONTINUE
  1071. *
  1072. IF( UPDATE ) THEN
  1073. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1074. *
  1075. * create nonzero element a(i+kbt-ka-1,i+kbt) outside the
  1076. * band and store it in WORK(m-kb+i+kbt)
  1077. *
  1078. WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
  1079. END IF
  1080. END IF
  1081. *
  1082. DO 650 K = KB, 1, -1
  1083. IF( UPDATE ) THEN
  1084. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1085. ELSE
  1086. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1087. END IF
  1088. *
  1089. * finish applying rotations in 2nd set from the right
  1090. *
  1091. DO 620 L = KB - K, 1, -1
  1092. NRT = ( J2+KA+L-1 ) / KA1
  1093. J1T = J2 - ( NRT-1 )*KA1
  1094. IF( NRT.GT.0 )
  1095. $ CALL ZLARTV( NRT, AB( L, J1T+KA ), INCA,
  1096. $ AB( L+1, J1T+KA-1 ), INCA,
  1097. $ RWORK( M-KB+J1T+KA ),
  1098. $ WORK( M-KB+J1T+KA ), KA1 )
  1099. 620 CONTINUE
  1100. NR = ( J2+KA-1 ) / KA1
  1101. J1 = J2 - ( NR-1 )*KA1
  1102. DO 630 J = J1, J2, KA1
  1103. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1104. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1105. 630 CONTINUE
  1106. DO 640 J = J1, J2, KA1
  1107. *
  1108. * create nonzero element a(j-1,j+ka) outside the band
  1109. * and store it in WORK(m-kb+j)
  1110. *
  1111. WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
  1112. AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
  1113. 640 CONTINUE
  1114. IF( UPDATE ) THEN
  1115. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1116. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1117. END IF
  1118. 650 CONTINUE
  1119. *
  1120. DO 690 K = KB, 1, -1
  1121. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1122. NR = ( J2+KA-1 ) / KA1
  1123. J1 = J2 - ( NR-1 )*KA1
  1124. IF( NR.GT.0 ) THEN
  1125. *
  1126. * generate rotations in 2nd set to annihilate elements
  1127. * which have been created outside the band
  1128. *
  1129. CALL ZLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
  1130. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1131. *
  1132. * apply rotations in 2nd set from the left
  1133. *
  1134. DO 660 L = 1, KA - 1
  1135. CALL ZLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1136. $ AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
  1137. $ WORK( M-KB+J1 ), KA1 )
  1138. 660 CONTINUE
  1139. *
  1140. * apply rotations in 2nd set from both sides to diagonal
  1141. * blocks
  1142. *
  1143. CALL ZLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1144. $ AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
  1145. $ WORK( M-KB+J1 ), KA1 )
  1146. *
  1147. CALL ZLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1148. END IF
  1149. *
  1150. * start applying rotations in 2nd set from the right
  1151. *
  1152. DO 670 L = KA - 1, KB - K + 1, -1
  1153. NRT = ( J2+L-1 ) / KA1
  1154. J1T = J2 - ( NRT-1 )*KA1
  1155. IF( NRT.GT.0 )
  1156. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1157. $ AB( L+1, J1T-1 ), INCA,
  1158. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1159. $ KA1 )
  1160. 670 CONTINUE
  1161. *
  1162. IF( WANTX ) THEN
  1163. *
  1164. * post-multiply X by product of rotations in 2nd set
  1165. *
  1166. DO 680 J = J1, J2, KA1
  1167. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1168. $ RWORK( M-KB+J ), WORK( M-KB+J ) )
  1169. 680 CONTINUE
  1170. END IF
  1171. 690 CONTINUE
  1172. *
  1173. DO 710 K = 1, KB - 1
  1174. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1175. *
  1176. * finish applying rotations in 1st set from the right
  1177. *
  1178. DO 700 L = KB - K, 1, -1
  1179. NRT = ( J2+L-1 ) / KA1
  1180. J1T = J2 - ( NRT-1 )*KA1
  1181. IF( NRT.GT.0 )
  1182. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1183. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1184. $ WORK( J1T ), KA1 )
  1185. 700 CONTINUE
  1186. 710 CONTINUE
  1187. *
  1188. IF( KB.GT.1 ) THEN
  1189. DO 720 J = 2, I2 - KA
  1190. RWORK( J ) = RWORK( J+KA )
  1191. WORK( J ) = WORK( J+KA )
  1192. 720 CONTINUE
  1193. END IF
  1194. *
  1195. ELSE
  1196. *
  1197. * Transform A, working with the lower triangle
  1198. *
  1199. IF( UPDATE ) THEN
  1200. *
  1201. * Form inv(S(i))**H * A * inv(S(i))
  1202. *
  1203. BII = DBLE( BB( 1, I ) )
  1204. AB( 1, I ) = ( DBLE( AB( 1, I ) ) / BII ) / BII
  1205. DO 730 J = I1, I - 1
  1206. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  1207. 730 CONTINUE
  1208. DO 740 J = I + 1, MIN( N, I+KA )
  1209. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  1210. 740 CONTINUE
  1211. DO 770 K = I + 1, I + KBT
  1212. DO 750 J = K, I + KBT
  1213. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1214. $ BB( J-I+1, I )*DCONJG( AB( K-I+1,
  1215. $ I ) ) - DCONJG( BB( K-I+1, I ) )*
  1216. $ AB( J-I+1, I ) + DBLE( AB( 1, I ) )*
  1217. $ BB( J-I+1, I )*DCONJG( BB( K-I+1,
  1218. $ I ) )
  1219. 750 CONTINUE
  1220. DO 760 J = I + KBT + 1, MIN( N, I+KA )
  1221. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1222. $ DCONJG( BB( K-I+1, I ) )*
  1223. $ AB( J-I+1, I )
  1224. 760 CONTINUE
  1225. 770 CONTINUE
  1226. DO 790 J = I1, I
  1227. DO 780 K = I + 1, MIN( J+KA, I+KBT )
  1228. AB( K-J+1, J ) = AB( K-J+1, J ) -
  1229. $ BB( K-I+1, I )*AB( I-J+1, J )
  1230. 780 CONTINUE
  1231. 790 CONTINUE
  1232. *
  1233. IF( WANTX ) THEN
  1234. *
  1235. * post-multiply X by inv(S(i))
  1236. *
  1237. CALL ZDSCAL( NX, ONE / BII, X( 1, I ), 1 )
  1238. IF( KBT.GT.0 )
  1239. $ CALL ZGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
  1240. $ 1, X( 1, I+1 ), LDX )
  1241. END IF
  1242. *
  1243. * store a(i,i1) in RA1 for use in next loop over K
  1244. *
  1245. RA1 = AB( I-I1+1, I1 )
  1246. END IF
  1247. *
  1248. * Generate and apply vectors of rotations to chase all the
  1249. * existing bulges KA positions up toward the top of the band
  1250. *
  1251. DO 840 K = 1, KB - 1
  1252. IF( UPDATE ) THEN
  1253. *
  1254. * Determine the rotations which would annihilate the bulge
  1255. * which has in theory just been created
  1256. *
  1257. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  1258. *
  1259. * generate rotation to annihilate a(i,i+k-ka-1)
  1260. *
  1261. CALL ZLARTG( AB( KA1-K, I+K-KA ), RA1,
  1262. $ RWORK( I+K-KA ), WORK( I+K-KA ), RA )
  1263. *
  1264. * create nonzero element a(i+k,i+k-ka-1) outside the
  1265. * band and store it in WORK(m-kb+i+k)
  1266. *
  1267. T = -BB( K+1, I )*RA1
  1268. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  1269. $ DCONJG( WORK( I+K-KA ) )*
  1270. $ AB( KA1, I+K-KA )
  1271. AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
  1272. $ RWORK( I+K-KA )*AB( KA1, I+K-KA )
  1273. RA1 = RA
  1274. END IF
  1275. END IF
  1276. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1277. NR = ( J2+KA-1 ) / KA1
  1278. J1 = J2 - ( NR-1 )*KA1
  1279. IF( UPDATE ) THEN
  1280. J2T = MIN( J2, I-2*KA+K-1 )
  1281. ELSE
  1282. J2T = J2
  1283. END IF
  1284. NRT = ( J2T+KA-1 ) / KA1
  1285. DO 800 J = J1, J2T, KA1
  1286. *
  1287. * create nonzero element a(j+ka,j-1) outside the band
  1288. * and store it in WORK(j)
  1289. *
  1290. WORK( J ) = WORK( J )*AB( KA1, J-1 )
  1291. AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
  1292. 800 CONTINUE
  1293. *
  1294. * generate rotations in 1st set to annihilate elements which
  1295. * have been created outside the band
  1296. *
  1297. IF( NRT.GT.0 )
  1298. $ CALL ZLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
  1299. $ RWORK( J1 ), KA1 )
  1300. IF( NR.GT.0 ) THEN
  1301. *
  1302. * apply rotations in 1st set from the right
  1303. *
  1304. DO 810 L = 1, KA - 1
  1305. CALL ZLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1306. $ INCA, RWORK( J1 ), WORK( J1 ), KA1 )
  1307. 810 CONTINUE
  1308. *
  1309. * apply rotations in 1st set from both sides to diagonal
  1310. * blocks
  1311. *
  1312. CALL ZLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1313. $ AB( 2, J1-1 ), INCA, RWORK( J1 ),
  1314. $ WORK( J1 ), KA1 )
  1315. *
  1316. CALL ZLACGV( NR, WORK( J1 ), KA1 )
  1317. END IF
  1318. *
  1319. * start applying rotations in 1st set from the left
  1320. *
  1321. DO 820 L = KA - 1, KB - K + 1, -1
  1322. NRT = ( J2+L-1 ) / KA1
  1323. J1T = J2 - ( NRT-1 )*KA1
  1324. IF( NRT.GT.0 )
  1325. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1326. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1327. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1328. 820 CONTINUE
  1329. *
  1330. IF( WANTX ) THEN
  1331. *
  1332. * post-multiply X by product of rotations in 1st set
  1333. *
  1334. DO 830 J = J1, J2, KA1
  1335. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1336. $ RWORK( J ), DCONJG( WORK( J ) ) )
  1337. 830 CONTINUE
  1338. END IF
  1339. 840 CONTINUE
  1340. *
  1341. IF( UPDATE ) THEN
  1342. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1343. *
  1344. * create nonzero element a(i+kbt,i+kbt-ka-1) outside the
  1345. * band and store it in WORK(m-kb+i+kbt)
  1346. *
  1347. WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
  1348. END IF
  1349. END IF
  1350. *
  1351. DO 880 K = KB, 1, -1
  1352. IF( UPDATE ) THEN
  1353. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1354. ELSE
  1355. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1356. END IF
  1357. *
  1358. * finish applying rotations in 2nd set from the left
  1359. *
  1360. DO 850 L = KB - K, 1, -1
  1361. NRT = ( J2+KA+L-1 ) / KA1
  1362. J1T = J2 - ( NRT-1 )*KA1
  1363. IF( NRT.GT.0 )
  1364. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
  1365. $ AB( KA1-L, J1T+L-1 ), INCA,
  1366. $ RWORK( M-KB+J1T+KA ),
  1367. $ WORK( M-KB+J1T+KA ), KA1 )
  1368. 850 CONTINUE
  1369. NR = ( J2+KA-1 ) / KA1
  1370. J1 = J2 - ( NR-1 )*KA1
  1371. DO 860 J = J1, J2, KA1
  1372. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1373. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1374. 860 CONTINUE
  1375. DO 870 J = J1, J2, KA1
  1376. *
  1377. * create nonzero element a(j+ka,j-1) outside the band
  1378. * and store it in WORK(m-kb+j)
  1379. *
  1380. WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
  1381. AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
  1382. 870 CONTINUE
  1383. IF( UPDATE ) THEN
  1384. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1385. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1386. END IF
  1387. 880 CONTINUE
  1388. *
  1389. DO 920 K = KB, 1, -1
  1390. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1391. NR = ( J2+KA-1 ) / KA1
  1392. J1 = J2 - ( NR-1 )*KA1
  1393. IF( NR.GT.0 ) THEN
  1394. *
  1395. * generate rotations in 2nd set to annihilate elements
  1396. * which have been created outside the band
  1397. *
  1398. CALL ZLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
  1399. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1400. *
  1401. * apply rotations in 2nd set from the right
  1402. *
  1403. DO 890 L = 1, KA - 1
  1404. CALL ZLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1405. $ INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
  1406. $ KA1 )
  1407. 890 CONTINUE
  1408. *
  1409. * apply rotations in 2nd set from both sides to diagonal
  1410. * blocks
  1411. *
  1412. CALL ZLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1413. $ AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
  1414. $ WORK( M-KB+J1 ), KA1 )
  1415. *
  1416. CALL ZLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1417. END IF
  1418. *
  1419. * start applying rotations in 2nd set from the left
  1420. *
  1421. DO 900 L = KA - 1, KB - K + 1, -1
  1422. NRT = ( J2+L-1 ) / KA1
  1423. J1T = J2 - ( NRT-1 )*KA1
  1424. IF( NRT.GT.0 )
  1425. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1426. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1427. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1428. $ KA1 )
  1429. 900 CONTINUE
  1430. *
  1431. IF( WANTX ) THEN
  1432. *
  1433. * post-multiply X by product of rotations in 2nd set
  1434. *
  1435. DO 910 J = J1, J2, KA1
  1436. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1437. $ RWORK( M-KB+J ), DCONJG( WORK( M-KB+J ) ) )
  1438. 910 CONTINUE
  1439. END IF
  1440. 920 CONTINUE
  1441. *
  1442. DO 940 K = 1, KB - 1
  1443. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1444. *
  1445. * finish applying rotations in 1st set from the left
  1446. *
  1447. DO 930 L = KB - K, 1, -1
  1448. NRT = ( J2+L-1 ) / KA1
  1449. J1T = J2 - ( NRT-1 )*KA1
  1450. IF( NRT.GT.0 )
  1451. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1452. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1453. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1454. 930 CONTINUE
  1455. 940 CONTINUE
  1456. *
  1457. IF( KB.GT.1 ) THEN
  1458. DO 950 J = 2, I2 - KA
  1459. RWORK( J ) = RWORK( J+KA )
  1460. WORK( J ) = WORK( J+KA )
  1461. 950 CONTINUE
  1462. END IF
  1463. *
  1464. END IF
  1465. *
  1466. GO TO 490
  1467. *
  1468. * End of ZHBGST
  1469. *
  1470. END