You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sormr2.f 7.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. *> \brief \b SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORMR2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormr2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormr2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormr2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SORMR2 overwrites the general real m by n matrix C with
  39. *>
  40. *> Q * C if SIDE = 'L' and TRANS = 'N', or
  41. *>
  42. *> Q**T* C if SIDE = 'L' and TRANS = 'T', or
  43. *>
  44. *> C * Q if SIDE = 'R' and TRANS = 'N', or
  45. *>
  46. *> C * Q**T if SIDE = 'R' and TRANS = 'T',
  47. *>
  48. *> where Q is a real orthogonal matrix defined as the product of k
  49. *> elementary reflectors
  50. *>
  51. *> Q = H(1) H(2) . . . H(k)
  52. *>
  53. *> as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n
  54. *> if SIDE = 'R'.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] SIDE
  61. *> \verbatim
  62. *> SIDE is CHARACTER*1
  63. *> = 'L': apply Q or Q**T from the Left
  64. *> = 'R': apply Q or Q**T from the Right
  65. *> \endverbatim
  66. *>
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': apply Q (No transpose)
  71. *> = 'T': apply Q' (Transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix C. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix C. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] K
  87. *> \verbatim
  88. *> K is INTEGER
  89. *> The number of elementary reflectors whose product defines
  90. *> the matrix Q.
  91. *> If SIDE = 'L', M >= K >= 0;
  92. *> if SIDE = 'R', N >= K >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] A
  96. *> \verbatim
  97. *> A is REAL array, dimension
  98. *> (LDA,M) if SIDE = 'L',
  99. *> (LDA,N) if SIDE = 'R'
  100. *> The i-th row must contain the vector which defines the
  101. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  102. *> SGERQF in the last k rows of its array argument A.
  103. *> A is modified by the routine but restored on exit.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDA
  107. *> \verbatim
  108. *> LDA is INTEGER
  109. *> The leading dimension of the array A. LDA >= max(1,K).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] TAU
  113. *> \verbatim
  114. *> TAU is REAL array, dimension (K)
  115. *> TAU(i) must contain the scalar factor of the elementary
  116. *> reflector H(i), as returned by SGERQF.
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] C
  120. *> \verbatim
  121. *> C is REAL array, dimension (LDC,N)
  122. *> On entry, the m by n matrix C.
  123. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDC
  127. *> \verbatim
  128. *> LDC is INTEGER
  129. *> The leading dimension of the array C. LDC >= max(1,M).
  130. *> \endverbatim
  131. *>
  132. *> \param[out] WORK
  133. *> \verbatim
  134. *> WORK is REAL array, dimension
  135. *> (N) if SIDE = 'L',
  136. *> (M) if SIDE = 'R'
  137. *> \endverbatim
  138. *>
  139. *> \param[out] INFO
  140. *> \verbatim
  141. *> INFO is INTEGER
  142. *> = 0: successful exit
  143. *> < 0: if INFO = -i, the i-th argument had an illegal value
  144. *> \endverbatim
  145. *
  146. * Authors:
  147. * ========
  148. *
  149. *> \author Univ. of Tennessee
  150. *> \author Univ. of California Berkeley
  151. *> \author Univ. of Colorado Denver
  152. *> \author NAG Ltd.
  153. *
  154. *> \date December 2016
  155. *
  156. *> \ingroup realOTHERcomputational
  157. *
  158. * =====================================================================
  159. SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  160. $ WORK, INFO )
  161. *
  162. * -- LAPACK computational routine (version 3.7.0) --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. * December 2016
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER SIDE, TRANS
  169. INTEGER INFO, K, LDA, LDC, M, N
  170. * ..
  171. * .. Array Arguments ..
  172. REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  173. * ..
  174. *
  175. * =====================================================================
  176. *
  177. * .. Parameters ..
  178. REAL ONE
  179. PARAMETER ( ONE = 1.0E+0 )
  180. * ..
  181. * .. Local Scalars ..
  182. LOGICAL LEFT, NOTRAN
  183. INTEGER I, I1, I2, I3, MI, NI, NQ
  184. REAL AII
  185. * ..
  186. * .. External Functions ..
  187. LOGICAL LSAME
  188. EXTERNAL LSAME
  189. * ..
  190. * .. External Subroutines ..
  191. EXTERNAL SLARF, XERBLA
  192. * ..
  193. * .. Intrinsic Functions ..
  194. INTRINSIC MAX
  195. * ..
  196. * .. Executable Statements ..
  197. *
  198. * Test the input arguments
  199. *
  200. INFO = 0
  201. LEFT = LSAME( SIDE, 'L' )
  202. NOTRAN = LSAME( TRANS, 'N' )
  203. *
  204. * NQ is the order of Q
  205. *
  206. IF( LEFT ) THEN
  207. NQ = M
  208. ELSE
  209. NQ = N
  210. END IF
  211. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  212. INFO = -1
  213. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  214. INFO = -2
  215. ELSE IF( M.LT.0 ) THEN
  216. INFO = -3
  217. ELSE IF( N.LT.0 ) THEN
  218. INFO = -4
  219. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  220. INFO = -5
  221. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  222. INFO = -7
  223. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  224. INFO = -10
  225. END IF
  226. IF( INFO.NE.0 ) THEN
  227. CALL XERBLA( 'SORMR2', -INFO )
  228. RETURN
  229. END IF
  230. *
  231. * Quick return if possible
  232. *
  233. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
  234. $ RETURN
  235. *
  236. IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
  237. $ THEN
  238. I1 = 1
  239. I2 = K
  240. I3 = 1
  241. ELSE
  242. I1 = K
  243. I2 = 1
  244. I3 = -1
  245. END IF
  246. *
  247. IF( LEFT ) THEN
  248. NI = N
  249. ELSE
  250. MI = M
  251. END IF
  252. *
  253. DO 10 I = I1, I2, I3
  254. IF( LEFT ) THEN
  255. *
  256. * H(i) is applied to C(1:m-k+i,1:n)
  257. *
  258. MI = M - K + I
  259. ELSE
  260. *
  261. * H(i) is applied to C(1:m,1:n-k+i)
  262. *
  263. NI = N - K + I
  264. END IF
  265. *
  266. * Apply H(i)
  267. *
  268. AII = A( I, NQ-K+I )
  269. A( I, NQ-K+I ) = ONE
  270. CALL SLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC,
  271. $ WORK )
  272. A( I, NQ-K+I ) = AII
  273. 10 CONTINUE
  274. RETURN
  275. *
  276. * End of SORMR2
  277. *
  278. END