You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slantp.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. *> \brief \b SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANTP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL AP( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SLANTP returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> triangular matrix A, supplied in packed form.
  40. *> \endverbatim
  41. *>
  42. *> \return SLANTP
  43. *> \verbatim
  44. *>
  45. *> SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in SLANTP as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] UPLO
  70. *> \verbatim
  71. *> UPLO is CHARACTER*1
  72. *> Specifies whether the matrix A is upper or lower triangular.
  73. *> = 'U': Upper triangular
  74. *> = 'L': Lower triangular
  75. *> \endverbatim
  76. *>
  77. *> \param[in] DIAG
  78. *> \verbatim
  79. *> DIAG is CHARACTER*1
  80. *> Specifies whether or not the matrix A is unit triangular.
  81. *> = 'N': Non-unit triangular
  82. *> = 'U': Unit triangular
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The order of the matrix A. N >= 0. When N = 0, SLANTP is
  89. *> set to zero.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] AP
  93. *> \verbatim
  94. *> AP is REAL array, dimension (N*(N+1)/2)
  95. *> The upper or lower triangular matrix A, packed columnwise in
  96. *> a linear array. The j-th column of A is stored in the array
  97. *> AP as follows:
  98. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  99. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  100. *> Note that when DIAG = 'U', the elements of the array AP
  101. *> corresponding to the diagonal elements of the matrix A are
  102. *> not referenced, but are assumed to be one.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  109. *> referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date December 2016
  121. *
  122. *> \ingroup realOTHERauxiliary
  123. *
  124. * =====================================================================
  125. REAL FUNCTION SLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  126. *
  127. * -- LAPACK auxiliary routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. IMPLICIT NONE
  133. * .. Scalar Arguments ..
  134. CHARACTER DIAG, NORM, UPLO
  135. INTEGER N
  136. * ..
  137. * .. Array Arguments ..
  138. REAL AP( * ), WORK( * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. REAL ONE, ZERO
  145. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  146. * ..
  147. * .. Local Scalars ..
  148. LOGICAL UDIAG
  149. INTEGER I, J, K
  150. REAL SUM, VALUE
  151. * ..
  152. * .. Local Arrays ..
  153. REAL SSQ( 2 ), COLSSQ( 2 )
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME, SISNAN
  157. EXTERNAL LSAME, SISNAN
  158. * ..
  159. * .. External Subroutines ..
  160. EXTERNAL SLASSQ, SCOMBSSQ
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC ABS, SQRT
  164. * ..
  165. * .. Executable Statements ..
  166. *
  167. IF( N.EQ.0 ) THEN
  168. VALUE = ZERO
  169. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  170. *
  171. * Find max(abs(A(i,j))).
  172. *
  173. K = 1
  174. IF( LSAME( DIAG, 'U' ) ) THEN
  175. VALUE = ONE
  176. IF( LSAME( UPLO, 'U' ) ) THEN
  177. DO 20 J = 1, N
  178. DO 10 I = K, K + J - 2
  179. SUM = ABS( AP( I ) )
  180. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  181. 10 CONTINUE
  182. K = K + J
  183. 20 CONTINUE
  184. ELSE
  185. DO 40 J = 1, N
  186. DO 30 I = K + 1, K + N - J
  187. SUM = ABS( AP( I ) )
  188. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  189. 30 CONTINUE
  190. K = K + N - J + 1
  191. 40 CONTINUE
  192. END IF
  193. ELSE
  194. VALUE = ZERO
  195. IF( LSAME( UPLO, 'U' ) ) THEN
  196. DO 60 J = 1, N
  197. DO 50 I = K, K + J - 1
  198. SUM = ABS( AP( I ) )
  199. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  200. 50 CONTINUE
  201. K = K + J
  202. 60 CONTINUE
  203. ELSE
  204. DO 80 J = 1, N
  205. DO 70 I = K, K + N - J
  206. SUM = ABS( AP( I ) )
  207. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  208. 70 CONTINUE
  209. K = K + N - J + 1
  210. 80 CONTINUE
  211. END IF
  212. END IF
  213. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  214. *
  215. * Find norm1(A).
  216. *
  217. VALUE = ZERO
  218. K = 1
  219. UDIAG = LSAME( DIAG, 'U' )
  220. IF( LSAME( UPLO, 'U' ) ) THEN
  221. DO 110 J = 1, N
  222. IF( UDIAG ) THEN
  223. SUM = ONE
  224. DO 90 I = K, K + J - 2
  225. SUM = SUM + ABS( AP( I ) )
  226. 90 CONTINUE
  227. ELSE
  228. SUM = ZERO
  229. DO 100 I = K, K + J - 1
  230. SUM = SUM + ABS( AP( I ) )
  231. 100 CONTINUE
  232. END IF
  233. K = K + J
  234. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  235. 110 CONTINUE
  236. ELSE
  237. DO 140 J = 1, N
  238. IF( UDIAG ) THEN
  239. SUM = ONE
  240. DO 120 I = K + 1, K + N - J
  241. SUM = SUM + ABS( AP( I ) )
  242. 120 CONTINUE
  243. ELSE
  244. SUM = ZERO
  245. DO 130 I = K, K + N - J
  246. SUM = SUM + ABS( AP( I ) )
  247. 130 CONTINUE
  248. END IF
  249. K = K + N - J + 1
  250. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  251. 140 CONTINUE
  252. END IF
  253. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  254. *
  255. * Find normI(A).
  256. *
  257. K = 1
  258. IF( LSAME( UPLO, 'U' ) ) THEN
  259. IF( LSAME( DIAG, 'U' ) ) THEN
  260. DO 150 I = 1, N
  261. WORK( I ) = ONE
  262. 150 CONTINUE
  263. DO 170 J = 1, N
  264. DO 160 I = 1, J - 1
  265. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  266. K = K + 1
  267. 160 CONTINUE
  268. K = K + 1
  269. 170 CONTINUE
  270. ELSE
  271. DO 180 I = 1, N
  272. WORK( I ) = ZERO
  273. 180 CONTINUE
  274. DO 200 J = 1, N
  275. DO 190 I = 1, J
  276. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  277. K = K + 1
  278. 190 CONTINUE
  279. 200 CONTINUE
  280. END IF
  281. ELSE
  282. IF( LSAME( DIAG, 'U' ) ) THEN
  283. DO 210 I = 1, N
  284. WORK( I ) = ONE
  285. 210 CONTINUE
  286. DO 230 J = 1, N
  287. K = K + 1
  288. DO 220 I = J + 1, N
  289. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  290. K = K + 1
  291. 220 CONTINUE
  292. 230 CONTINUE
  293. ELSE
  294. DO 240 I = 1, N
  295. WORK( I ) = ZERO
  296. 240 CONTINUE
  297. DO 260 J = 1, N
  298. DO 250 I = J, N
  299. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  300. K = K + 1
  301. 250 CONTINUE
  302. 260 CONTINUE
  303. END IF
  304. END IF
  305. VALUE = ZERO
  306. DO 270 I = 1, N
  307. SUM = WORK( I )
  308. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  309. 270 CONTINUE
  310. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  311. *
  312. * Find normF(A).
  313. * SSQ(1) is scale
  314. * SSQ(2) is sum-of-squares
  315. * For better accuracy, sum each column separately.
  316. *
  317. IF( LSAME( UPLO, 'U' ) ) THEN
  318. IF( LSAME( DIAG, 'U' ) ) THEN
  319. SSQ( 1 ) = ONE
  320. SSQ( 2 ) = N
  321. K = 2
  322. DO 280 J = 2, N
  323. COLSSQ( 1 ) = ZERO
  324. COLSSQ( 2 ) = ONE
  325. CALL SLASSQ( J-1, AP( K ), 1,
  326. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  327. CALL SCOMBSSQ( SSQ, COLSSQ )
  328. K = K + J
  329. 280 CONTINUE
  330. ELSE
  331. SSQ( 1 ) = ZERO
  332. SSQ( 2 ) = ONE
  333. K = 1
  334. DO 290 J = 1, N
  335. COLSSQ( 1 ) = ZERO
  336. COLSSQ( 2 ) = ONE
  337. CALL SLASSQ( J, AP( K ), 1,
  338. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  339. CALL SCOMBSSQ( SSQ, COLSSQ )
  340. K = K + J
  341. 290 CONTINUE
  342. END IF
  343. ELSE
  344. IF( LSAME( DIAG, 'U' ) ) THEN
  345. SSQ( 1 ) = ONE
  346. SSQ( 2 ) = N
  347. K = 2
  348. DO 300 J = 1, N - 1
  349. COLSSQ( 1 ) = ZERO
  350. COLSSQ( 2 ) = ONE
  351. CALL SLASSQ( N-J, AP( K ), 1,
  352. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  353. CALL SCOMBSSQ( SSQ, COLSSQ )
  354. K = K + N - J + 1
  355. 300 CONTINUE
  356. ELSE
  357. SSQ( 1 ) = ZERO
  358. SSQ( 2 ) = ONE
  359. K = 1
  360. DO 310 J = 1, N
  361. COLSSQ( 1 ) = ZERO
  362. COLSSQ( 2 ) = ONE
  363. CALL SLASSQ( N-J+1, AP( K ), 1,
  364. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  365. CALL SCOMBSSQ( SSQ, COLSSQ )
  366. K = K + N - J + 1
  367. 310 CONTINUE
  368. END IF
  369. END IF
  370. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  371. END IF
  372. *
  373. SLANTP = VALUE
  374. RETURN
  375. *
  376. * End of SLANTP
  377. *
  378. END