You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggevx.f 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. *> \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGGEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
  22. * ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
  23. * IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
  24. * RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER BALANC, JOBVL, JOBVR, SENSE
  28. * INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  29. * REAL ABNRM, BBNRM
  30. * ..
  31. * .. Array Arguments ..
  32. * LOGICAL BWORK( * )
  33. * INTEGER IWORK( * )
  34. * REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  35. * $ B( LDB, * ), BETA( * ), LSCALE( * ),
  36. * $ RCONDE( * ), RCONDV( * ), RSCALE( * ),
  37. * $ VL( LDVL, * ), VR( LDVR, * ), WORK( * )
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. * =============
  43. *>
  44. *> \verbatim
  45. *>
  46. *> SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
  47. *> the generalized eigenvalues, and optionally, the left and/or right
  48. *> generalized eigenvectors.
  49. *>
  50. *> Optionally also, it computes a balancing transformation to improve
  51. *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
  52. *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
  53. *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
  54. *> right eigenvectors (RCONDV).
  55. *>
  56. *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
  57. *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
  58. *> singular. It is usually represented as the pair (alpha,beta), as
  59. *> there is a reasonable interpretation for beta=0, and even for both
  60. *> being zero.
  61. *>
  62. *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
  63. *> of (A,B) satisfies
  64. *>
  65. *> A * v(j) = lambda(j) * B * v(j) .
  66. *>
  67. *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
  68. *> of (A,B) satisfies
  69. *>
  70. *> u(j)**H * A = lambda(j) * u(j)**H * B.
  71. *>
  72. *> where u(j)**H is the conjugate-transpose of u(j).
  73. *>
  74. *> \endverbatim
  75. *
  76. * Arguments:
  77. * ==========
  78. *
  79. *> \param[in] BALANC
  80. *> \verbatim
  81. *> BALANC is CHARACTER*1
  82. *> Specifies the balance option to be performed.
  83. *> = 'N': do not diagonally scale or permute;
  84. *> = 'P': permute only;
  85. *> = 'S': scale only;
  86. *> = 'B': both permute and scale.
  87. *> Computed reciprocal condition numbers will be for the
  88. *> matrices after permuting and/or balancing. Permuting does
  89. *> not change condition numbers (in exact arithmetic), but
  90. *> balancing does.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] JOBVL
  94. *> \verbatim
  95. *> JOBVL is CHARACTER*1
  96. *> = 'N': do not compute the left generalized eigenvectors;
  97. *> = 'V': compute the left generalized eigenvectors.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] JOBVR
  101. *> \verbatim
  102. *> JOBVR is CHARACTER*1
  103. *> = 'N': do not compute the right generalized eigenvectors;
  104. *> = 'V': compute the right generalized eigenvectors.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] SENSE
  108. *> \verbatim
  109. *> SENSE is CHARACTER*1
  110. *> Determines which reciprocal condition numbers are computed.
  111. *> = 'N': none are computed;
  112. *> = 'E': computed for eigenvalues only;
  113. *> = 'V': computed for eigenvectors only;
  114. *> = 'B': computed for eigenvalues and eigenvectors.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] N
  118. *> \verbatim
  119. *> N is INTEGER
  120. *> The order of the matrices A, B, VL, and VR. N >= 0.
  121. *> \endverbatim
  122. *>
  123. *> \param[in,out] A
  124. *> \verbatim
  125. *> A is REAL array, dimension (LDA, N)
  126. *> On entry, the matrix A in the pair (A,B).
  127. *> On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
  128. *> or both, then A contains the first part of the real Schur
  129. *> form of the "balanced" versions of the input A and B.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDA
  133. *> \verbatim
  134. *> LDA is INTEGER
  135. *> The leading dimension of A. LDA >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] B
  139. *> \verbatim
  140. *> B is REAL array, dimension (LDB, N)
  141. *> On entry, the matrix B in the pair (A,B).
  142. *> On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
  143. *> or both, then B contains the second part of the real Schur
  144. *> form of the "balanced" versions of the input A and B.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] LDB
  148. *> \verbatim
  149. *> LDB is INTEGER
  150. *> The leading dimension of B. LDB >= max(1,N).
  151. *> \endverbatim
  152. *>
  153. *> \param[out] ALPHAR
  154. *> \verbatim
  155. *> ALPHAR is REAL array, dimension (N)
  156. *> \endverbatim
  157. *>
  158. *> \param[out] ALPHAI
  159. *> \verbatim
  160. *> ALPHAI is REAL array, dimension (N)
  161. *> \endverbatim
  162. *>
  163. *> \param[out] BETA
  164. *> \verbatim
  165. *> BETA is REAL array, dimension (N)
  166. *> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  167. *> be the generalized eigenvalues. If ALPHAI(j) is zero, then
  168. *> the j-th eigenvalue is real; if positive, then the j-th and
  169. *> (j+1)-st eigenvalues are a complex conjugate pair, with
  170. *> ALPHAI(j+1) negative.
  171. *>
  172. *> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  173. *> may easily over- or underflow, and BETA(j) may even be zero.
  174. *> Thus, the user should avoid naively computing the ratio
  175. *> ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
  176. *> than and usually comparable with norm(A) in magnitude, and
  177. *> BETA always less than and usually comparable with norm(B).
  178. *> \endverbatim
  179. *>
  180. *> \param[out] VL
  181. *> \verbatim
  182. *> VL is REAL array, dimension (LDVL,N)
  183. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  184. *> after another in the columns of VL, in the same order as
  185. *> their eigenvalues. If the j-th eigenvalue is real, then
  186. *> u(j) = VL(:,j), the j-th column of VL. If the j-th and
  187. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  188. *> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  189. *> Each eigenvector will be scaled so the largest component have
  190. *> abs(real part) + abs(imag. part) = 1.
  191. *> Not referenced if JOBVL = 'N'.
  192. *> \endverbatim
  193. *>
  194. *> \param[in] LDVL
  195. *> \verbatim
  196. *> LDVL is INTEGER
  197. *> The leading dimension of the matrix VL. LDVL >= 1, and
  198. *> if JOBVL = 'V', LDVL >= N.
  199. *> \endverbatim
  200. *>
  201. *> \param[out] VR
  202. *> \verbatim
  203. *> VR is REAL array, dimension (LDVR,N)
  204. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  205. *> after another in the columns of VR, in the same order as
  206. *> their eigenvalues. If the j-th eigenvalue is real, then
  207. *> v(j) = VR(:,j), the j-th column of VR. If the j-th and
  208. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  209. *> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  210. *> Each eigenvector will be scaled so the largest component have
  211. *> abs(real part) + abs(imag. part) = 1.
  212. *> Not referenced if JOBVR = 'N'.
  213. *> \endverbatim
  214. *>
  215. *> \param[in] LDVR
  216. *> \verbatim
  217. *> LDVR is INTEGER
  218. *> The leading dimension of the matrix VR. LDVR >= 1, and
  219. *> if JOBVR = 'V', LDVR >= N.
  220. *> \endverbatim
  221. *>
  222. *> \param[out] ILO
  223. *> \verbatim
  224. *> ILO is INTEGER
  225. *> \endverbatim
  226. *>
  227. *> \param[out] IHI
  228. *> \verbatim
  229. *> IHI is INTEGER
  230. *> ILO and IHI are integer values such that on exit
  231. *> A(i,j) = 0 and B(i,j) = 0 if i > j and
  232. *> j = 1,...,ILO-1 or i = IHI+1,...,N.
  233. *> If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  234. *> \endverbatim
  235. *>
  236. *> \param[out] LSCALE
  237. *> \verbatim
  238. *> LSCALE is REAL array, dimension (N)
  239. *> Details of the permutations and scaling factors applied
  240. *> to the left side of A and B. If PL(j) is the index of the
  241. *> row interchanged with row j, and DL(j) is the scaling
  242. *> factor applied to row j, then
  243. *> LSCALE(j) = PL(j) for j = 1,...,ILO-1
  244. *> = DL(j) for j = ILO,...,IHI
  245. *> = PL(j) for j = IHI+1,...,N.
  246. *> The order in which the interchanges are made is N to IHI+1,
  247. *> then 1 to ILO-1.
  248. *> \endverbatim
  249. *>
  250. *> \param[out] RSCALE
  251. *> \verbatim
  252. *> RSCALE is REAL array, dimension (N)
  253. *> Details of the permutations and scaling factors applied
  254. *> to the right side of A and B. If PR(j) is the index of the
  255. *> column interchanged with column j, and DR(j) is the scaling
  256. *> factor applied to column j, then
  257. *> RSCALE(j) = PR(j) for j = 1,...,ILO-1
  258. *> = DR(j) for j = ILO,...,IHI
  259. *> = PR(j) for j = IHI+1,...,N
  260. *> The order in which the interchanges are made is N to IHI+1,
  261. *> then 1 to ILO-1.
  262. *> \endverbatim
  263. *>
  264. *> \param[out] ABNRM
  265. *> \verbatim
  266. *> ABNRM is REAL
  267. *> The one-norm of the balanced matrix A.
  268. *> \endverbatim
  269. *>
  270. *> \param[out] BBNRM
  271. *> \verbatim
  272. *> BBNRM is REAL
  273. *> The one-norm of the balanced matrix B.
  274. *> \endverbatim
  275. *>
  276. *> \param[out] RCONDE
  277. *> \verbatim
  278. *> RCONDE is REAL array, dimension (N)
  279. *> If SENSE = 'E' or 'B', the reciprocal condition numbers of
  280. *> the eigenvalues, stored in consecutive elements of the array.
  281. *> For a complex conjugate pair of eigenvalues two consecutive
  282. *> elements of RCONDE are set to the same value. Thus RCONDE(j),
  283. *> RCONDV(j), and the j-th columns of VL and VR all correspond
  284. *> to the j-th eigenpair.
  285. *> If SENSE = 'N' or 'V', RCONDE is not referenced.
  286. *> \endverbatim
  287. *>
  288. *> \param[out] RCONDV
  289. *> \verbatim
  290. *> RCONDV is REAL array, dimension (N)
  291. *> If SENSE = 'V' or 'B', the estimated reciprocal condition
  292. *> numbers of the eigenvectors, stored in consecutive elements
  293. *> of the array. For a complex eigenvector two consecutive
  294. *> elements of RCONDV are set to the same value. If the
  295. *> eigenvalues cannot be reordered to compute RCONDV(j),
  296. *> RCONDV(j) is set to 0; this can only occur when the true
  297. *> value would be very small anyway.
  298. *> If SENSE = 'N' or 'E', RCONDV is not referenced.
  299. *> \endverbatim
  300. *>
  301. *> \param[out] WORK
  302. *> \verbatim
  303. *> WORK is REAL array, dimension (MAX(1,LWORK))
  304. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  305. *> \endverbatim
  306. *>
  307. *> \param[in] LWORK
  308. *> \verbatim
  309. *> LWORK is INTEGER
  310. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  311. *> If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
  312. *> LWORK >= max(1,6*N).
  313. *> If SENSE = 'E', LWORK >= max(1,10*N).
  314. *> If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
  315. *>
  316. *> If LWORK = -1, then a workspace query is assumed; the routine
  317. *> only calculates the optimal size of the WORK array, returns
  318. *> this value as the first entry of the WORK array, and no error
  319. *> message related to LWORK is issued by XERBLA.
  320. *> \endverbatim
  321. *>
  322. *> \param[out] IWORK
  323. *> \verbatim
  324. *> IWORK is INTEGER array, dimension (N+6)
  325. *> If SENSE = 'E', IWORK is not referenced.
  326. *> \endverbatim
  327. *>
  328. *> \param[out] BWORK
  329. *> \verbatim
  330. *> BWORK is LOGICAL array, dimension (N)
  331. *> If SENSE = 'N', BWORK is not referenced.
  332. *> \endverbatim
  333. *>
  334. *> \param[out] INFO
  335. *> \verbatim
  336. *> INFO is INTEGER
  337. *> = 0: successful exit
  338. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  339. *> = 1,...,N:
  340. *> The QZ iteration failed. No eigenvectors have been
  341. *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  342. *> should be correct for j=INFO+1,...,N.
  343. *> > N: =N+1: other than QZ iteration failed in SHGEQZ.
  344. *> =N+2: error return from STGEVC.
  345. *> \endverbatim
  346. *
  347. * Authors:
  348. * ========
  349. *
  350. *> \author Univ. of Tennessee
  351. *> \author Univ. of California Berkeley
  352. *> \author Univ. of Colorado Denver
  353. *> \author NAG Ltd.
  354. *
  355. *> \date April 2012
  356. *
  357. *> \ingroup realGEeigen
  358. *
  359. *> \par Further Details:
  360. * =====================
  361. *>
  362. *> \verbatim
  363. *>
  364. *> Balancing a matrix pair (A,B) includes, first, permuting rows and
  365. *> columns to isolate eigenvalues, second, applying diagonal similarity
  366. *> transformation to the rows and columns to make the rows and columns
  367. *> as close in norm as possible. The computed reciprocal condition
  368. *> numbers correspond to the balanced matrix. Permuting rows and columns
  369. *> will not change the condition numbers (in exact arithmetic) but
  370. *> diagonal scaling will. For further explanation of balancing, see
  371. *> section 4.11.1.2 of LAPACK Users' Guide.
  372. *>
  373. *> An approximate error bound on the chordal distance between the i-th
  374. *> computed generalized eigenvalue w and the corresponding exact
  375. *> eigenvalue lambda is
  376. *>
  377. *> chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  378. *>
  379. *> An approximate error bound for the angle between the i-th computed
  380. *> eigenvector VL(i) or VR(i) is given by
  381. *>
  382. *> EPS * norm(ABNRM, BBNRM) / DIF(i).
  383. *>
  384. *> For further explanation of the reciprocal condition numbers RCONDE
  385. *> and RCONDV, see section 4.11 of LAPACK User's Guide.
  386. *> \endverbatim
  387. *>
  388. * =====================================================================
  389. SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
  390. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
  391. $ IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
  392. $ RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
  393. *
  394. * -- LAPACK driver routine (version 3.7.0) --
  395. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  396. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  397. * April 2012
  398. *
  399. * .. Scalar Arguments ..
  400. CHARACTER BALANC, JOBVL, JOBVR, SENSE
  401. INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  402. REAL ABNRM, BBNRM
  403. * ..
  404. * .. Array Arguments ..
  405. LOGICAL BWORK( * )
  406. INTEGER IWORK( * )
  407. REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  408. $ B( LDB, * ), BETA( * ), LSCALE( * ),
  409. $ RCONDE( * ), RCONDV( * ), RSCALE( * ),
  410. $ VL( LDVL, * ), VR( LDVR, * ), WORK( * )
  411. * ..
  412. *
  413. * =====================================================================
  414. *
  415. * .. Parameters ..
  416. REAL ZERO, ONE
  417. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  418. * ..
  419. * .. Local Scalars ..
  420. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  421. $ PAIR, WANTSB, WANTSE, WANTSN, WANTSV
  422. CHARACTER CHTEMP
  423. INTEGER I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  424. $ ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
  425. $ MINWRK, MM
  426. REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  427. $ SMLNUM, TEMP
  428. * ..
  429. * .. Local Arrays ..
  430. LOGICAL LDUMMA( 1 )
  431. * ..
  432. * .. External Subroutines ..
  433. EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
  434. $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
  435. $ STGSNA, XERBLA
  436. * ..
  437. * .. External Functions ..
  438. LOGICAL LSAME
  439. INTEGER ILAENV
  440. REAL SLAMCH, SLANGE
  441. EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
  442. * ..
  443. * .. Intrinsic Functions ..
  444. INTRINSIC ABS, MAX, SQRT
  445. * ..
  446. * .. Executable Statements ..
  447. *
  448. * Decode the input arguments
  449. *
  450. IF( LSAME( JOBVL, 'N' ) ) THEN
  451. IJOBVL = 1
  452. ILVL = .FALSE.
  453. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  454. IJOBVL = 2
  455. ILVL = .TRUE.
  456. ELSE
  457. IJOBVL = -1
  458. ILVL = .FALSE.
  459. END IF
  460. *
  461. IF( LSAME( JOBVR, 'N' ) ) THEN
  462. IJOBVR = 1
  463. ILVR = .FALSE.
  464. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  465. IJOBVR = 2
  466. ILVR = .TRUE.
  467. ELSE
  468. IJOBVR = -1
  469. ILVR = .FALSE.
  470. END IF
  471. ILV = ILVL .OR. ILVR
  472. *
  473. NOSCL = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  474. WANTSN = LSAME( SENSE, 'N' )
  475. WANTSE = LSAME( SENSE, 'E' )
  476. WANTSV = LSAME( SENSE, 'V' )
  477. WANTSB = LSAME( SENSE, 'B' )
  478. *
  479. * Test the input arguments
  480. *
  481. INFO = 0
  482. LQUERY = ( LWORK.EQ.-1 )
  483. IF( .NOT.( NOSCL .OR. LSAME( BALANC, 'S' ) .OR.
  484. $ LSAME( BALANC, 'B' ) ) ) THEN
  485. INFO = -1
  486. ELSE IF( IJOBVL.LE.0 ) THEN
  487. INFO = -2
  488. ELSE IF( IJOBVR.LE.0 ) THEN
  489. INFO = -3
  490. ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  491. $ THEN
  492. INFO = -4
  493. ELSE IF( N.LT.0 ) THEN
  494. INFO = -5
  495. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  496. INFO = -7
  497. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  498. INFO = -9
  499. ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  500. INFO = -14
  501. ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  502. INFO = -16
  503. END IF
  504. *
  505. * Compute workspace
  506. * (Note: Comments in the code beginning "Workspace:" describe the
  507. * minimal amount of workspace needed at that point in the code,
  508. * as well as the preferred amount for good performance.
  509. * NB refers to the optimal block size for the immediately
  510. * following subroutine, as returned by ILAENV. The workspace is
  511. * computed assuming ILO = 1 and IHI = N, the worst case.)
  512. *
  513. IF( INFO.EQ.0 ) THEN
  514. IF( N.EQ.0 ) THEN
  515. MINWRK = 1
  516. MAXWRK = 1
  517. ELSE
  518. IF( NOSCL .AND. .NOT.ILV ) THEN
  519. MINWRK = 2*N
  520. ELSE
  521. MINWRK = 6*N
  522. END IF
  523. IF( WANTSE ) THEN
  524. MINWRK = 10*N
  525. ELSE IF( WANTSV .OR. WANTSB ) THEN
  526. MINWRK = 2*N*( N + 4 ) + 16
  527. END IF
  528. MAXWRK = MINWRK
  529. MAXWRK = MAX( MAXWRK,
  530. $ N + N*ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 ) )
  531. MAXWRK = MAX( MAXWRK,
  532. $ N + N*ILAENV( 1, 'SORMQR', ' ', N, 1, N, 0 ) )
  533. IF( ILVL ) THEN
  534. MAXWRK = MAX( MAXWRK, N +
  535. $ N*ILAENV( 1, 'SORGQR', ' ', N, 1, N, 0 ) )
  536. END IF
  537. END IF
  538. WORK( 1 ) = MAXWRK
  539. *
  540. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  541. INFO = -26
  542. END IF
  543. END IF
  544. *
  545. IF( INFO.NE.0 ) THEN
  546. CALL XERBLA( 'SGGEVX', -INFO )
  547. RETURN
  548. ELSE IF( LQUERY ) THEN
  549. RETURN
  550. END IF
  551. *
  552. * Quick return if possible
  553. *
  554. IF( N.EQ.0 )
  555. $ RETURN
  556. *
  557. *
  558. * Get machine constants
  559. *
  560. EPS = SLAMCH( 'P' )
  561. SMLNUM = SLAMCH( 'S' )
  562. BIGNUM = ONE / SMLNUM
  563. CALL SLABAD( SMLNUM, BIGNUM )
  564. SMLNUM = SQRT( SMLNUM ) / EPS
  565. BIGNUM = ONE / SMLNUM
  566. *
  567. * Scale A if max element outside range [SMLNUM,BIGNUM]
  568. *
  569. ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
  570. ILASCL = .FALSE.
  571. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  572. ANRMTO = SMLNUM
  573. ILASCL = .TRUE.
  574. ELSE IF( ANRM.GT.BIGNUM ) THEN
  575. ANRMTO = BIGNUM
  576. ILASCL = .TRUE.
  577. END IF
  578. IF( ILASCL )
  579. $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  580. *
  581. * Scale B if max element outside range [SMLNUM,BIGNUM]
  582. *
  583. BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
  584. ILBSCL = .FALSE.
  585. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  586. BNRMTO = SMLNUM
  587. ILBSCL = .TRUE.
  588. ELSE IF( BNRM.GT.BIGNUM ) THEN
  589. BNRMTO = BIGNUM
  590. ILBSCL = .TRUE.
  591. END IF
  592. IF( ILBSCL )
  593. $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  594. *
  595. * Permute and/or balance the matrix pair (A,B)
  596. * (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  597. *
  598. CALL SGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  599. $ WORK, IERR )
  600. *
  601. * Compute ABNRM and BBNRM
  602. *
  603. ABNRM = SLANGE( '1', N, N, A, LDA, WORK( 1 ) )
  604. IF( ILASCL ) THEN
  605. WORK( 1 ) = ABNRM
  606. CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
  607. $ IERR )
  608. ABNRM = WORK( 1 )
  609. END IF
  610. *
  611. BBNRM = SLANGE( '1', N, N, B, LDB, WORK( 1 ) )
  612. IF( ILBSCL ) THEN
  613. WORK( 1 ) = BBNRM
  614. CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
  615. $ IERR )
  616. BBNRM = WORK( 1 )
  617. END IF
  618. *
  619. * Reduce B to triangular form (QR decomposition of B)
  620. * (Workspace: need N, prefer N*NB )
  621. *
  622. IROWS = IHI + 1 - ILO
  623. IF( ILV .OR. .NOT.WANTSN ) THEN
  624. ICOLS = N + 1 - ILO
  625. ELSE
  626. ICOLS = IROWS
  627. END IF
  628. ITAU = 1
  629. IWRK = ITAU + IROWS
  630. CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  631. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  632. *
  633. * Apply the orthogonal transformation to A
  634. * (Workspace: need N, prefer N*NB)
  635. *
  636. CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  637. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  638. $ LWORK+1-IWRK, IERR )
  639. *
  640. * Initialize VL and/or VR
  641. * (Workspace: need N, prefer N*NB)
  642. *
  643. IF( ILVL ) THEN
  644. CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  645. IF( IROWS.GT.1 ) THEN
  646. CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  647. $ VL( ILO+1, ILO ), LDVL )
  648. END IF
  649. CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  650. $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  651. END IF
  652. *
  653. IF( ILVR )
  654. $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  655. *
  656. * Reduce to generalized Hessenberg form
  657. * (Workspace: none needed)
  658. *
  659. IF( ILV .OR. .NOT.WANTSN ) THEN
  660. *
  661. * Eigenvectors requested -- work on whole matrix.
  662. *
  663. CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  664. $ LDVL, VR, LDVR, IERR )
  665. ELSE
  666. CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  667. $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  668. END IF
  669. *
  670. * Perform QZ algorithm (Compute eigenvalues, and optionally, the
  671. * Schur forms and Schur vectors)
  672. * (Workspace: need N)
  673. *
  674. IF( ILV .OR. .NOT.WANTSN ) THEN
  675. CHTEMP = 'S'
  676. ELSE
  677. CHTEMP = 'E'
  678. END IF
  679. *
  680. CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  681. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
  682. $ LWORK, IERR )
  683. IF( IERR.NE.0 ) THEN
  684. IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  685. INFO = IERR
  686. ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  687. INFO = IERR - N
  688. ELSE
  689. INFO = N + 1
  690. END IF
  691. GO TO 130
  692. END IF
  693. *
  694. * Compute Eigenvectors and estimate condition numbers if desired
  695. * (Workspace: STGEVC: need 6*N
  696. * STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
  697. * need N otherwise )
  698. *
  699. IF( ILV .OR. .NOT.WANTSN ) THEN
  700. IF( ILV ) THEN
  701. IF( ILVL ) THEN
  702. IF( ILVR ) THEN
  703. CHTEMP = 'B'
  704. ELSE
  705. CHTEMP = 'L'
  706. END IF
  707. ELSE
  708. CHTEMP = 'R'
  709. END IF
  710. *
  711. CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  712. $ LDVL, VR, LDVR, N, IN, WORK, IERR )
  713. IF( IERR.NE.0 ) THEN
  714. INFO = N + 2
  715. GO TO 130
  716. END IF
  717. END IF
  718. *
  719. IF( .NOT.WANTSN ) THEN
  720. *
  721. * compute eigenvectors (STGEVC) and estimate condition
  722. * numbers (STGSNA). Note that the definition of the condition
  723. * number is not invariant under transformation (u,v) to
  724. * (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  725. * Schur form (S,T), Q and Z are orthogonal matrices. In order
  726. * to avoid using extra 2*N*N workspace, we have to recalculate
  727. * eigenvectors and estimate one condition numbers at a time.
  728. *
  729. PAIR = .FALSE.
  730. DO 20 I = 1, N
  731. *
  732. IF( PAIR ) THEN
  733. PAIR = .FALSE.
  734. GO TO 20
  735. END IF
  736. MM = 1
  737. IF( I.LT.N ) THEN
  738. IF( A( I+1, I ).NE.ZERO ) THEN
  739. PAIR = .TRUE.
  740. MM = 2
  741. END IF
  742. END IF
  743. *
  744. DO 10 J = 1, N
  745. BWORK( J ) = .FALSE.
  746. 10 CONTINUE
  747. IF( MM.EQ.1 ) THEN
  748. BWORK( I ) = .TRUE.
  749. ELSE IF( MM.EQ.2 ) THEN
  750. BWORK( I ) = .TRUE.
  751. BWORK( I+1 ) = .TRUE.
  752. END IF
  753. *
  754. IWRK = MM*N + 1
  755. IWRK1 = IWRK + MM*N
  756. *
  757. * Compute a pair of left and right eigenvectors.
  758. * (compute workspace: need up to 4*N + 6*N)
  759. *
  760. IF( WANTSE .OR. WANTSB ) THEN
  761. CALL STGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  762. $ WORK( 1 ), N, WORK( IWRK ), N, MM, M,
  763. $ WORK( IWRK1 ), IERR )
  764. IF( IERR.NE.0 ) THEN
  765. INFO = N + 2
  766. GO TO 130
  767. END IF
  768. END IF
  769. *
  770. CALL STGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  771. $ WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  772. $ RCONDV( I ), MM, M, WORK( IWRK1 ),
  773. $ LWORK-IWRK1+1, IWORK, IERR )
  774. *
  775. 20 CONTINUE
  776. END IF
  777. END IF
  778. *
  779. * Undo balancing on VL and VR and normalization
  780. * (Workspace: none needed)
  781. *
  782. IF( ILVL ) THEN
  783. CALL SGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  784. $ LDVL, IERR )
  785. *
  786. DO 70 JC = 1, N
  787. IF( ALPHAI( JC ).LT.ZERO )
  788. $ GO TO 70
  789. TEMP = ZERO
  790. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  791. DO 30 JR = 1, N
  792. TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  793. 30 CONTINUE
  794. ELSE
  795. DO 40 JR = 1, N
  796. TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  797. $ ABS( VL( JR, JC+1 ) ) )
  798. 40 CONTINUE
  799. END IF
  800. IF( TEMP.LT.SMLNUM )
  801. $ GO TO 70
  802. TEMP = ONE / TEMP
  803. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  804. DO 50 JR = 1, N
  805. VL( JR, JC ) = VL( JR, JC )*TEMP
  806. 50 CONTINUE
  807. ELSE
  808. DO 60 JR = 1, N
  809. VL( JR, JC ) = VL( JR, JC )*TEMP
  810. VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  811. 60 CONTINUE
  812. END IF
  813. 70 CONTINUE
  814. END IF
  815. IF( ILVR ) THEN
  816. CALL SGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  817. $ LDVR, IERR )
  818. DO 120 JC = 1, N
  819. IF( ALPHAI( JC ).LT.ZERO )
  820. $ GO TO 120
  821. TEMP = ZERO
  822. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  823. DO 80 JR = 1, N
  824. TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  825. 80 CONTINUE
  826. ELSE
  827. DO 90 JR = 1, N
  828. TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  829. $ ABS( VR( JR, JC+1 ) ) )
  830. 90 CONTINUE
  831. END IF
  832. IF( TEMP.LT.SMLNUM )
  833. $ GO TO 120
  834. TEMP = ONE / TEMP
  835. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  836. DO 100 JR = 1, N
  837. VR( JR, JC ) = VR( JR, JC )*TEMP
  838. 100 CONTINUE
  839. ELSE
  840. DO 110 JR = 1, N
  841. VR( JR, JC ) = VR( JR, JC )*TEMP
  842. VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  843. 110 CONTINUE
  844. END IF
  845. 120 CONTINUE
  846. END IF
  847. *
  848. * Undo scaling if necessary
  849. *
  850. 130 CONTINUE
  851. *
  852. IF( ILASCL ) THEN
  853. CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  854. CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  855. END IF
  856. *
  857. IF( ILBSCL ) THEN
  858. CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  859. END IF
  860. *
  861. WORK( 1 ) = MAXWRK
  862. RETURN
  863. *
  864. * End of SGGEVX
  865. *
  866. END