You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clansb.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. *> \brief \b CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLANSB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clansb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clansb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clansb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLANSB( NORM, UPLO, N, K, AB, LDAB,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL WORK( * )
  30. * COMPLEX AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLANSB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n symmetric band matrix A, with k super-diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return CLANSB
  45. *> \verbatim
  46. *>
  47. *> CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in CLANSB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the upper or lower triangular part of the
  75. *> band matrix A is supplied.
  76. *> = 'U': Upper triangular part is supplied
  77. *> = 'L': Lower triangular part is supplied
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The order of the matrix A. N >= 0. When N = 0, CLANSB is
  84. *> set to zero.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] K
  88. *> \verbatim
  89. *> K is INTEGER
  90. *> The number of super-diagonals or sub-diagonals of the
  91. *> band matrix A. K >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] AB
  95. *> \verbatim
  96. *> AB is COMPLEX array, dimension (LDAB,N)
  97. *> The upper or lower triangle of the symmetric band matrix A,
  98. *> stored in the first K+1 rows of AB. The j-th column of A is
  99. *> stored in the j-th column of the array AB as follows:
  100. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  101. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDAB
  105. *> \verbatim
  106. *> LDAB is INTEGER
  107. *> The leading dimension of the array AB. LDAB >= K+1.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  113. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  114. *> WORK is not referenced.
  115. *> \endverbatim
  116. *
  117. * Authors:
  118. * ========
  119. *
  120. *> \author Univ. of Tennessee
  121. *> \author Univ. of California Berkeley
  122. *> \author Univ. of Colorado Denver
  123. *> \author NAG Ltd.
  124. *
  125. *> \date December 2016
  126. *
  127. *> \ingroup complexOTHERauxiliary
  128. *
  129. * =====================================================================
  130. REAL FUNCTION CLANSB( NORM, UPLO, N, K, AB, LDAB,
  131. $ WORK )
  132. *
  133. * -- LAPACK auxiliary routine (version 3.7.0) --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. * December 2016
  137. *
  138. IMPLICIT NONE
  139. * .. Scalar Arguments ..
  140. CHARACTER NORM, UPLO
  141. INTEGER K, LDAB, N
  142. * ..
  143. * .. Array Arguments ..
  144. REAL WORK( * )
  145. COMPLEX AB( LDAB, * )
  146. * ..
  147. *
  148. * =====================================================================
  149. *
  150. * .. Parameters ..
  151. REAL ONE, ZERO
  152. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  153. * ..
  154. * .. Local Scalars ..
  155. INTEGER I, J, L
  156. REAL ABSA, SUM, VALUE
  157. * ..
  158. * .. Local Arrays ..
  159. REAL SSQ( 2 ), COLSSQ( 2 )
  160. * ..
  161. * .. External Functions ..
  162. LOGICAL LSAME, SISNAN
  163. EXTERNAL LSAME, SISNAN
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL CLASSQ, SCOMBSSQ
  167. * ..
  168. * .. Intrinsic Functions ..
  169. INTRINSIC ABS, MAX, MIN, SQRT
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. IF( N.EQ.0 ) THEN
  174. VALUE = ZERO
  175. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  176. *
  177. * Find max(abs(A(i,j))).
  178. *
  179. VALUE = ZERO
  180. IF( LSAME( UPLO, 'U' ) ) THEN
  181. DO 20 J = 1, N
  182. DO 10 I = MAX( K+2-J, 1 ), K + 1
  183. SUM = ABS( AB( I, J ) )
  184. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  185. 10 CONTINUE
  186. 20 CONTINUE
  187. ELSE
  188. DO 40 J = 1, N
  189. DO 30 I = 1, MIN( N+1-J, K+1 )
  190. SUM = ABS( AB( I, J ) )
  191. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  192. 30 CONTINUE
  193. 40 CONTINUE
  194. END IF
  195. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  196. $ ( NORM.EQ.'1' ) ) THEN
  197. *
  198. * Find normI(A) ( = norm1(A), since A is symmetric).
  199. *
  200. VALUE = ZERO
  201. IF( LSAME( UPLO, 'U' ) ) THEN
  202. DO 60 J = 1, N
  203. SUM = ZERO
  204. L = K + 1 - J
  205. DO 50 I = MAX( 1, J-K ), J - 1
  206. ABSA = ABS( AB( L+I, J ) )
  207. SUM = SUM + ABSA
  208. WORK( I ) = WORK( I ) + ABSA
  209. 50 CONTINUE
  210. WORK( J ) = SUM + ABS( AB( K+1, J ) )
  211. 60 CONTINUE
  212. DO 70 I = 1, N
  213. SUM = WORK( I )
  214. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  215. 70 CONTINUE
  216. ELSE
  217. DO 80 I = 1, N
  218. WORK( I ) = ZERO
  219. 80 CONTINUE
  220. DO 100 J = 1, N
  221. SUM = WORK( J ) + ABS( AB( 1, J ) )
  222. L = 1 - J
  223. DO 90 I = J + 1, MIN( N, J+K )
  224. ABSA = ABS( AB( L+I, J ) )
  225. SUM = SUM + ABSA
  226. WORK( I ) = WORK( I ) + ABSA
  227. 90 CONTINUE
  228. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  229. 100 CONTINUE
  230. END IF
  231. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  232. *
  233. * Find normF(A).
  234. * SSQ(1) is scale
  235. * SSQ(2) is sum-of-squares
  236. * For better accuracy, sum each column separately.
  237. *
  238. SSQ( 1 ) = ZERO
  239. SSQ( 2 ) = ONE
  240. *
  241. * Sum off-diagonals
  242. *
  243. IF( K.GT.0 ) THEN
  244. IF( LSAME( UPLO, 'U' ) ) THEN
  245. DO 110 J = 2, N
  246. COLSSQ( 1 ) = ZERO
  247. COLSSQ( 2 ) = ONE
  248. CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
  249. $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  250. CALL SCOMBSSQ( SSQ, COLSSQ )
  251. 110 CONTINUE
  252. L = K + 1
  253. ELSE
  254. DO 120 J = 1, N - 1
  255. COLSSQ( 1 ) = ZERO
  256. COLSSQ( 2 ) = ONE
  257. CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
  258. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  259. CALL SCOMBSSQ( SSQ, COLSSQ )
  260. 120 CONTINUE
  261. L = 1
  262. END IF
  263. SSQ( 2 ) = 2*SSQ( 2 )
  264. ELSE
  265. L = 1
  266. END IF
  267. *
  268. * Sum diagonal
  269. *
  270. COLSSQ( 1 ) = ZERO
  271. COLSSQ( 2 ) = ONE
  272. CALL CLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) )
  273. CALL SCOMBSSQ( SSQ, COLSSQ )
  274. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  275. END IF
  276. *
  277. CLANSB = VALUE
  278. RETURN
  279. *
  280. * End of CLANSB
  281. *
  282. END