You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clagtm.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. *> \brief \b CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAGTM + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clagtm.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clagtm.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clagtm.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
  22. * B, LDB )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER LDB, LDX, N, NRHS
  27. * REAL ALPHA, BETA
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLAGTM performs a matrix-vector product of the form
  41. *>
  42. *> B := alpha * A * X + beta * B
  43. *>
  44. *> where A is a tridiagonal matrix of order N, B and X are N by NRHS
  45. *> matrices, and alpha and beta are real scalars, each of which may be
  46. *> 0., 1., or -1.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> Specifies the operation applied to A.
  56. *> = 'N': No transpose, B := alpha * A * X + beta * B
  57. *> = 'T': Transpose, B := alpha * A**T * X + beta * B
  58. *> = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] NRHS
  68. *> \verbatim
  69. *> NRHS is INTEGER
  70. *> The number of right hand sides, i.e., the number of columns
  71. *> of the matrices X and B.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] ALPHA
  75. *> \verbatim
  76. *> ALPHA is REAL
  77. *> The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
  78. *> it is assumed to be 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] DL
  82. *> \verbatim
  83. *> DL is COMPLEX array, dimension (N-1)
  84. *> The (n-1) sub-diagonal elements of T.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] D
  88. *> \verbatim
  89. *> D is COMPLEX array, dimension (N)
  90. *> The diagonal elements of T.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] DU
  94. *> \verbatim
  95. *> DU is COMPLEX array, dimension (N-1)
  96. *> The (n-1) super-diagonal elements of T.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] X
  100. *> \verbatim
  101. *> X is COMPLEX array, dimension (LDX,NRHS)
  102. *> The N by NRHS matrix X.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDX
  106. *> \verbatim
  107. *> LDX is INTEGER
  108. *> The leading dimension of the array X. LDX >= max(N,1).
  109. *> \endverbatim
  110. *>
  111. *> \param[in] BETA
  112. *> \verbatim
  113. *> BETA is REAL
  114. *> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
  115. *> it is assumed to be 1.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] B
  119. *> \verbatim
  120. *> B is COMPLEX array, dimension (LDB,NRHS)
  121. *> On entry, the N by NRHS matrix B.
  122. *> On exit, B is overwritten by the matrix expression
  123. *> B := alpha * A * X + beta * B.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDB
  127. *> \verbatim
  128. *> LDB is INTEGER
  129. *> The leading dimension of the array B. LDB >= max(N,1).
  130. *> \endverbatim
  131. *
  132. * Authors:
  133. * ========
  134. *
  135. *> \author Univ. of Tennessee
  136. *> \author Univ. of California Berkeley
  137. *> \author Univ. of Colorado Denver
  138. *> \author NAG Ltd.
  139. *
  140. *> \date December 2016
  141. *
  142. *> \ingroup complexOTHERauxiliary
  143. *
  144. * =====================================================================
  145. SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
  146. $ B, LDB )
  147. *
  148. * -- LAPACK auxiliary routine (version 3.7.0) --
  149. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  150. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151. * December 2016
  152. *
  153. * .. Scalar Arguments ..
  154. CHARACTER TRANS
  155. INTEGER LDB, LDX, N, NRHS
  156. REAL ALPHA, BETA
  157. * ..
  158. * .. Array Arguments ..
  159. COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
  160. $ X( LDX, * )
  161. * ..
  162. *
  163. * =====================================================================
  164. *
  165. * .. Parameters ..
  166. REAL ONE, ZERO
  167. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  168. * ..
  169. * .. Local Scalars ..
  170. INTEGER I, J
  171. * ..
  172. * .. External Functions ..
  173. LOGICAL LSAME
  174. EXTERNAL LSAME
  175. * ..
  176. * .. Intrinsic Functions ..
  177. INTRINSIC CONJG
  178. * ..
  179. * .. Executable Statements ..
  180. *
  181. IF( N.EQ.0 )
  182. $ RETURN
  183. *
  184. * Multiply B by BETA if BETA.NE.1.
  185. *
  186. IF( BETA.EQ.ZERO ) THEN
  187. DO 20 J = 1, NRHS
  188. DO 10 I = 1, N
  189. B( I, J ) = ZERO
  190. 10 CONTINUE
  191. 20 CONTINUE
  192. ELSE IF( BETA.EQ.-ONE ) THEN
  193. DO 40 J = 1, NRHS
  194. DO 30 I = 1, N
  195. B( I, J ) = -B( I, J )
  196. 30 CONTINUE
  197. 40 CONTINUE
  198. END IF
  199. *
  200. IF( ALPHA.EQ.ONE ) THEN
  201. IF( LSAME( TRANS, 'N' ) ) THEN
  202. *
  203. * Compute B := B + A*X
  204. *
  205. DO 60 J = 1, NRHS
  206. IF( N.EQ.1 ) THEN
  207. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  208. ELSE
  209. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  210. $ DU( 1 )*X( 2, J )
  211. B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
  212. $ D( N )*X( N, J )
  213. DO 50 I = 2, N - 1
  214. B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
  215. $ D( I )*X( I, J ) + DU( I )*X( I+1, J )
  216. 50 CONTINUE
  217. END IF
  218. 60 CONTINUE
  219. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  220. *
  221. * Compute B := B + A**T * X
  222. *
  223. DO 80 J = 1, NRHS
  224. IF( N.EQ.1 ) THEN
  225. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  226. ELSE
  227. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  228. $ DL( 1 )*X( 2, J )
  229. B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
  230. $ D( N )*X( N, J )
  231. DO 70 I = 2, N - 1
  232. B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
  233. $ D( I )*X( I, J ) + DL( I )*X( I+1, J )
  234. 70 CONTINUE
  235. END IF
  236. 80 CONTINUE
  237. ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  238. *
  239. * Compute B := B + A**H * X
  240. *
  241. DO 100 J = 1, NRHS
  242. IF( N.EQ.1 ) THEN
  243. B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J )
  244. ELSE
  245. B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J ) +
  246. $ CONJG( DL( 1 ) )*X( 2, J )
  247. B( N, J ) = B( N, J ) + CONJG( DU( N-1 ) )*
  248. $ X( N-1, J ) + CONJG( D( N ) )*X( N, J )
  249. DO 90 I = 2, N - 1
  250. B( I, J ) = B( I, J ) + CONJG( DU( I-1 ) )*
  251. $ X( I-1, J ) + CONJG( D( I ) )*
  252. $ X( I, J ) + CONJG( DL( I ) )*
  253. $ X( I+1, J )
  254. 90 CONTINUE
  255. END IF
  256. 100 CONTINUE
  257. END IF
  258. ELSE IF( ALPHA.EQ.-ONE ) THEN
  259. IF( LSAME( TRANS, 'N' ) ) THEN
  260. *
  261. * Compute B := B - A*X
  262. *
  263. DO 120 J = 1, NRHS
  264. IF( N.EQ.1 ) THEN
  265. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  266. ELSE
  267. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  268. $ DU( 1 )*X( 2, J )
  269. B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
  270. $ D( N )*X( N, J )
  271. DO 110 I = 2, N - 1
  272. B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
  273. $ D( I )*X( I, J ) - DU( I )*X( I+1, J )
  274. 110 CONTINUE
  275. END IF
  276. 120 CONTINUE
  277. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  278. *
  279. * Compute B := B - A**T*X
  280. *
  281. DO 140 J = 1, NRHS
  282. IF( N.EQ.1 ) THEN
  283. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  284. ELSE
  285. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  286. $ DL( 1 )*X( 2, J )
  287. B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
  288. $ D( N )*X( N, J )
  289. DO 130 I = 2, N - 1
  290. B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
  291. $ D( I )*X( I, J ) - DL( I )*X( I+1, J )
  292. 130 CONTINUE
  293. END IF
  294. 140 CONTINUE
  295. ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  296. *
  297. * Compute B := B - A**H*X
  298. *
  299. DO 160 J = 1, NRHS
  300. IF( N.EQ.1 ) THEN
  301. B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J )
  302. ELSE
  303. B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J ) -
  304. $ CONJG( DL( 1 ) )*X( 2, J )
  305. B( N, J ) = B( N, J ) - CONJG( DU( N-1 ) )*
  306. $ X( N-1, J ) - CONJG( D( N ) )*X( N, J )
  307. DO 150 I = 2, N - 1
  308. B( I, J ) = B( I, J ) - CONJG( DU( I-1 ) )*
  309. $ X( I-1, J ) - CONJG( D( I ) )*
  310. $ X( I, J ) - CONJG( DL( I ) )*
  311. $ X( I+1, J )
  312. 150 CONTINUE
  313. END IF
  314. 160 CONTINUE
  315. END IF
  316. END IF
  317. RETURN
  318. *
  319. * End of CLAGTM
  320. *
  321. END